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AFIT/GCS/ENG/07-02 

Abstract 

Modern navigation systems can use the Global Positioning System (GPS) to 

accurately determine position with precision in some cases bordering on millimeters.  

Unfortunately, GPS technology is susceptible to jamming, interception, and 

unavailability indoors or underground.  There are several navigation techniques that can 

be used to navigate during times of GPS unavailability, but there are very few that result 

in GPS-level precision.  One method of achieving high precision navigation without GPS 

is to fuse data obtained from multiple sensors. 

This thesis explores the fusion of imaging and inertial sensors and implements them 

in a real-time system that mimics human navigation.  In addition, programmable graphics 

processing unit technology is leveraged to perform stream-based image processing using 

a computer’s video card.  The resulting system can perform complex mathematical 

computations in a fraction of the time those same operations would take on a CPU-based 

platform.  The resulting system is an adaptable, portable, inexpensive and self-contained 

software and hardware platform, which paves the way for advances in autonomous 

navigation, mobile cartography, and artificial intelligence. 
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I.  Introduction 

1.1 The Need for Precision Navigation 

Korean Air Lines flight KAL 007 took off from John F. Kennedy International 

Airport, the morning of August 31, 1983, destined for Seoul-Kimpo International Airport.  

By 18:26 GMT, KAL 007 was unknowingly off-course, 500 kilometers deep in Soviet 

Territory and flanked by two Soviet Su-15 jet fighter planes.  Minutes later, KAL 007 

and its 269 passengers and crew crashed into the sea north of Moneron Island, shot down 

by a missile fired from a Soviet fighter. 

This tragic incident could have been avoided using advanced navigation 

techniques available today.  The advent of the Global Positioning System (GPS) has 

made precision navigation more affordable, portable, and commonplace on ships, 

airplanes, and automobiles (Kaplan 2005).  However, GPS can have significant problems 

with availability and accuracy.  Specifically, current GPS receivers cannot receive signals 

indoors, underground, or on other planets.  In addition, problems with jamming (Boyle 

2003), multipath (Georgiadou 1988), atmospheric dispersion (Snay 2000), and solar 

flares (Chen 2005) can have potentially dangerous effects on the accuracy of a position 

obtained from GPS.  These problems have led to a growing demand for GPS-alternative 

precision navigation techniques in both the civilian and military community. 
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Precision navigation also paves the way for unmanned vehicles, which is a topic 

of interest for the United States military.  In the National Defense Authorization Act for 

Fiscal Year 2001, Congress mandated that “It shall be a goal of the Armed Forces to 

achieve the fielding of unmanned, remotely controlled technology such that… by 2015, 

one-third of the operational ground combat vehicles are unmanned.” Agencies like the 

Defense Advanced Research Projects Agency (DARPA) conduct annual precision 

navigation competitions in support of this Congressional mandate. Every “dull, dirty, or 

dangerous” task that can be carried out using a machine instead of a human protects our 

warfighters and allows valuable human resources to be used more effectively (DARPA 

2007).  However, any precision navigation solution will have to be robust to the military 

environment and cost-effective for ground vehicle applications. 

1.2 Research Goals and Hypothesis 

The thrust of this research was to improve a state-of-the-art image-aided inertial 

navigation system developed in previous research at AFIT (Veth 2006).  Using image 

sensors for precision navigation has outstanding potential.  However, previous 

applications have been limited due to the complex image processing required and the 

corresponding computational requirements.  While the previous system overcame several 

of the classic image processing barriers and calculated position with near-GPS level 

accuracy, it was incapable of real-time processing using mobile hardware.  Therefore, the 

goal of this research was to approach the problem from a software engineering standpoint 

and resolve the real-time processing and mobility shortcomings of the previous 

navigation system.  To achieve this goal, the fundamental idea was to exploit the parallel 
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nature of both the multiple sensor data acquisition and the image processing algorithm 

used by the navigation system.  The hypothesis was that the computational burden of the 

image processing algorithm could be offloaded to a graphics processing unit, and multi-

sensor data acquisition and access could be optimized using proven software engineering 

techniques. 

1.3 Scope of Research 

The navigation research conducted in this thesis was performed as a continuation 

and improvement to doctoral research previously conducted at AFIT (Veth 2006).  The 

previous research in the areas of image-aided inertial navigation was novel, and even now 

is state-of-the-art GPS-alternative navigation.  The previous system was built to test and 

demonstrate image-aided inertial navigation theory, with a focus on completeness and 

accuracy.  The work presented in this thesis is aimed at continuing the development of 

the previous system, but focuses on cost and performance.  In addition, this thesis is 

aimed at transitioning the previous work to a solution that will perform navigation 

predictions as accurately as the previous system, but in real-time on commodity 

computing hardware. 

Likewise, the general-purpose graphics processing unit (GPGPU) concepts 

presented in this thesis are built upon a larger, existing knowledge base.  Most of the 

GPGPU concepts were derived from the GPGPU tutorial and other works from (GPGPU 

2007).  The GPGPU software package used in this thesis was built upon OpenVIDIA, an 

image processing application written by James Fung (Fung 2005).  Fung’s software was 
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researched, analyzed, modified for navigation use, and finally integrated into the software 

system architecture. 

Furthermore, the multi-sensor fusion algorithm used in this thesis is also not a 

novel concept.  Multi-sensor fusion was used as the foundation to optimally combine 

imaging and inertial sensors on a single platform.  This feat was accomplished by fusing 

the blackboard architecture described in (Dong 2005) with the Model-View-Controller 

architecture described in (Gamma 1995). 

The navigation system presented in this thesis is a synergistic combination of 

many different theories and concepts that have never before been applied to a navigation 

problem.  However, this thesis does not cover any of the afore-mentioned concepts in 

minute detail.  Therefore, readers who are looking for in-depth information on precision 

navigation, GPGPU, or multi-sensor fusion should read the works by the referenced 

authors.  Readers who want to know how these concepts can be combined in a real-time 

system for navigation should read on. 

1.4 Related Research 

Precision navigation has been a persistent topic of interest in the defense and 

civilian industry.  GPS has proved invaluable in aircraft, automobile and ship navigation, 

and is finding more use in manufacturing, surveying and agriculture (Shanwad 2002).  

Naturally, most current precision navigation research has been improvements in GPS 

accuracy and availability.  However, there are also a few researchers and scientists who 

have been developing GPS-alternative navigation techniques and platforms.  These 

scientists are mostly interested in solving the Simultaneous Localization and Mapping 
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Problem, or SLAM.  Current research in SLAM, as well as a conceptual overview of the 

problem, has been compiled in a paper by Chen (Chen 2007).  The navigation system 

presented in this thesis can also be applied to the SLAM problem, but that is not the focus 

of this research. 

First and foremost, the navigation system presented in this paper is based upon 

previous research at AFIT.  The navigation system is probability-based, using a Kalman 

Filter to combine image and inertial sensor readings into a single navigation prediction.  

This work is significant in the fact that it is one of the first systems to use the Scale-

Invariant Feature Transform (SIFT) algorithm (Lowe 2004) to choose landmarks for 

navigation in an unknown environment, described in Chapter 2.  SIFT landmarks are 

unique from each other, so they can potentially be saved in a database for future 

navigation or map-building.  Also significant in the previous work is the way in which a 

3D representation of the navigating body and landmarks are constructed from 2D 

imagery.  This approach is more sophisticated than the work of many others in this area, 

because it can be applied to airborne vehicles in addition to ground-based navigating 

bodies.  However, the work is limited to strictly post-processing navigation data, since it 

does not have the ability to simultaneously acquire sensor data and process navigation 

predictions. 

Sebastian Thrun, of Stanford University, has developed many vision-based 

navigation algorithms and platforms in the past half-decade, including MINERVA 

(Thrun 2000) and STANLEY (Thrun 2006).  Much of his research is also probability-

based using a Kalman filter, similar to the navigation system in this paper and the work at 
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AFIT.  However, none of his systems take advantage of the parallel nature of multi-

sensor fusion or image processing.  Instead, his approaches use a simplified form of 

image processing and feature extraction to obtain environmental landmarks.  Although 

Thrun’s system can perform basic navigation tasks like obstacle avoidance, his systems 

do not have the capability to navigate precisely in unknown environments. 

Stefano Panzieri has also done significant research in the area of controls, 

robotics, and sensor fusion.  His SLAM work has ranged from particle filter-based 

implementations (Panzieri 2006) to Kalman filter-based implementations (Panzieri 2003) 

and many methods in-between.  Panzieri has also performed a significant amount of his 

research in the field of vision-based navigation using low-cost sensors (Panzieri 2005), 

which is similar to a secondary focus of this thesis.  However, Panzieri does not make use 

of the SIFT algorithm or the parallel nature of sensor acquisition and image processing, 

as the navigation system presented in this paper does.  His focus is instead on using 

landmarks in known environments, such as rectangular light fixtures in an indoor 

environment, to ease the computational burden and complexity of image processing. 

Alberto Broggi is primarily concerned with the use of vision for vehicle 

applications.  His research is significant in that his sensor platforms fuse primary vision 

sensors with laser (Broggi 2006) and radar (Broggi 2006b) sensors to obtain terrain and 

range measurements for navigation.  This approach is very effective, but once again does 

not exploit parallelism and is not designed for concurrent data acquisition.  Although 

Broggi’s approaches construct a 3D representation of the 2D stereo image sensor data, 

just as the approach in this thesis does, the 3D objects in Broggi’s system are merely used 
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for obstacle avoidance by the navigating platform, rather than as unique landmarks, 

which is useful to problems like SLAM and target recognition.  

Other notable names in the GPS-alternative navigation field include Robert Sim 

and Massimo Bertozzi, who used methods similar to those described above for SLAM 

solutions.  As evidenced above, there are no researchers who are working on real-time 

precision image-aided navigation in the manner described in this thesis.  Researchers who 

are performing work in this area rely upon less complex features or a-priori feature and 

environment information to perform image processing in real-time.  This makes the work 

in this thesis valuable to the navigation community and truly state-of-the-art. 

There have been a few attempts to augment CPU-based image processing by 

using programmable hardware.  The objective of this type of research is to speed up 

feature extraction by using hardware dedicated to image processing.  Stephen Se from the 

University of British Columbia has developed a field-programmable gate array (FPGA) 

implementation of SIFT (Se 2004).  The advantage of the FPGA is that it can perform 

very fast computations via the use of dedicated, specialized hardware tailored for an 

arbitrary application.  Se’s work resulted in a system that was able to create a 3D terrain 

model using stereo images captured at 7 Hertz (Hz) and 500 x 450 resolution using an 

FPGA and other dedicated hardware.  This was a speedup of 3.5 times the rate at which 

his CPU-only solution could perform the task.  However, use of specialized hardware, 

such as an integrated circuit, imposes a constraint on the flexibility and extensibility of 

the system.  In addition, the cost for programmable FPGA hardware is prohibitive to 

proliferating these devices on a ground vehicle fleet. 
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There has also been a tremendous amount of recent work in the field of GPGPU 

image processing research.  The most notable research for this thesis is the work done by 

James Fung (Fung 2005), Sudipta Sinha (Sinha 2006) and Sebastian Heymann (Heymann 

2007).  These three individuals, all working on separate projects at different universities 

and industries, have independently developed GPU-based SIFT implementations.  All 

have found fantastic success with their implementations, with an increase in feature 

extraction speed between 4 and 14 times the speed of CPU feature extraction.  In 

addition, Fung’s work is open-source, meaning it is available and free for public use.  The 

price/performance ratio is also more favorable in the case of GPU-based SIFT vs. FPGA-

based SIFT, making it an interesting research area to explore.  While their work is 

valuable to the image processing community, their implementations require adaptation 

for use in precision navigation applications.  

1.5 Thesis Overview 

The remainder of this thesis is divided into four Chapters.  Chapter 2 provides 

background information on technologies used in the navigation system.  This includes 

background information on the Scale-Invariant Feature Transform (SIFT) used to find 

landmarks/features from captured images and general-purpose graphics processing unit 

(GPGPU) technology used for hardware-accelerated image processing.  Chapter 2 also 

provides background information on real-time image processing, multi-sensor fusion 

theory, and a background to software engineering design principles, all of which are 

fundamental to this problem.  Chapter 3 describes how the software package was created, 

how hardware was chosen and integrated, and how experiments were designed.  Chapter 
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4 contains the results of the experiments, including the speedup of GPGPU accelerated 

feature extraction over CPU feature extraction, and offers explanations for the results.  

Chapter five summarizes the process, set-up and results, and details future research that 

can be done in this area. 
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II. Literature Review 

This chapter provides background information for precision navigation techniques 

at a level necessary to understand the navigation system presented in this thesis.  This is 

followed by an introduction to biologically-inspired navigation systems considered for 

GPS-alternative solutions.  Next, the graphics processing unit (GPU) is described in 

detail, including components, stream processing model, rendering pipeline and the 

concept of general purpose computation using GPU hardware.  This is followed by a 

review of real-time systems and real-time constraints.  The final section of this chapter is 

a review of software engineering principles that are vital to understanding the software 

architecture employed for this problem. 

2.1 Introduction to Precision Navigation 

Precision navigation is a term used to describe navigation that requires a high 

level of accuracy.  The required accuracy can range from meters to millimeters, 

depending on the application.  For instance, the precision needed for row-spacing in 

agriculture can be on the order of meters.  If a seed is planted a meter away from where it 

was supposed to be planted, there may be crop loss, but there will likely be no loss of life.  

However, precision approach and landing systems and munitions guidance systems 

require sub-meter accuracy.  An aircraft that lands a meter away from where it was 

supposed to land could very likely result in loss of life.  There are many ways to perform 

precision navigation, including three mentioned in this thesis: inertial navigation, image-

aided navigation, and the global positioning system. 
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2.1.1 Inertial Navigation Systems 

Inertial navigation systems (INS) vary in size, architecture, and precision, but all 

use an inertial measurement unit (IMU) for sensor readings.  The most basic IMUs 

contain a clock for timing, accelerometers to determine linear acceleration and 

gyroscopes to determine the angular rotation rate of the INS relative to some inertial 

reference frame.  All INS are based on the principle of dead-reckoning.  Dead reckoning 

refers to the use of past measurements of elapsed time, speed and heading to predict one’s 

current position.  As illustrated in Figure 2.1, an INS can determine position, velocity, 

orientation and angular velocity using only the IMU readings and elapsed time.  

The inherent problem with dead reckoning is that over time, inaccurate or 

imprecise measurements from the IMU are integrated into larger errors in velocity and 

orientation and even larger errors in position and attitude estimates (Judd 1997).  

Typically, the precision and accuracy of an INS decrease as the size of an INS decreases, 

making these devices a trade-off of mobility for navigation performance.  Sometimes, the 

INS sensors are inaccurate and have false readings.  Other times, their readings simply 

aren’t precise enough to capture minute changes in pose or position of the navigation 

body.  Either way, these problems are compounded during dead-reckoning and can result 

in poor navigation performance. 

INS inaccuracy can be compensated for using a few standard approaches.  One 

standard approach is to model the inaccuracy of the sensor, and adjust the sensor readings 

accordingly to compensate for the inaccuracy.  The inaccuracy of the sensor can come 

from many sources, as described in (Veth 2006:19).  Each source of error has to be 
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determined and compensated for in the IMU model.  However, an IMU cannot determine 

its error on its own.  

Deduced Reckoning
Position 0: [0, 0]

Position 1: [1, 1]

Position 2: [2, 1]

Start at Position 0: [0, 0]

Head SE at 1 m/s for 1 s

Head E at 1 m/s for 1 s

Head SW at 1 m/s for 2 s

Final position [0, 2]

Position 3: [0, 2]

 

Figure 2.1:  Simple INS example using dead reckoning.  By integrating the sensor 

readings (left) over time, the final position can be computed.  The path is re-created on 

the right for a visual map of the route taken. 

 

  One of the most common ways to determine IMU sensor error and compensate 

for it in a ground-based platform is by using a zero-velocity update.  The principle behind 

the zero-velocity update is to stop all motion of the navigating platform, and subtract any 

acceleration or velocity readings from the IMU.  If the velocity and acceleration readings 

are constant, than the IMU likely has a constant source of error, or bias, that can be 

removed from future readings as well. 

Another way to determine IMU error and compensate for inaccuracy is to use 

additional sensors.  The readings from additional sensors can be combined with the IMU 

12 



 

readings to come up with a unified navigation prediction.  There are many ways to 

combine data from multiple sensors.  One approach that has been applied in many 

systems is to use a Kalman filter. 

2.1.2 Kalman Filter and Multi-Sensor Fusion 

The Kalman filter is a recursive filter used to estimate the state of a dynamic 

system from incomplete, noisy measurements.  In addition, the Kalman filter computes 

the estimated uncertainty of the state estimate using the state covariance matrix.  The 

function of the Kalman filter can be divided into two distinct operations; propagation and 

measurement updates.  Assuming that measurements are available at discrete time 

increments, (ti, ti+1, ti+2 … ti+n), the current state Xti and state covariance, Pti can be 

estimated using the state immediately prior to t, Xti-1, input measurements and noise.  The 

second phase of a Kalman filter is the propagation phase, which uses the solutions from 

the measurement update phase above to propagate to the next update time, Xti+1.  The 

Kalman filter equations and further information is available in (Maybeck 1979). 

The Kalman filter can be used to incorporate readings from several measurements 

into a single, unified state estimate.  In this way, the Kalman filter provides a mechanism 

for multi-sensor fusion.  The measurement update phase can be performed for each 

measurement available at any discrete time interval.  The propagation phase can then be 

invoked to determine the fused state estimate.  In addition, the covariance matrix can be 

applied to each measurement source to determine the uncertainty associated with each 

sensor.  For instance, if an inaccurate sensor, such as a consumer-grade IMU, was used as 

one measurement input, and a more accurate, tactical-grade IMU was used as a second 
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input, then the uncertainty associated with the consumer-grade IMU would be greater 

than the uncertainty associated with the tactical-grade IMU.  The readings from each 

IMU could then be weighted by the uncertainty for each sensor, resulting in a state 

estimate that was a weighted mean between the two sensors.  The multi-sensor Kalman 

filter is shown in Figure 2 and described in more detail in (Veth 2006). 

Kalman filter framework

Kalman Filter
UpdatePrediction

Sensor
Sensor

Sensor Capture

Sensor
Sensor

Sensor Control

Previous State
Xt-1

Current State
Xt

 

Figure 2.2: Multi-sensor Kalman Filter.  The current state estimate, Xt and the covariance 

error matrix, Pt, are computed using the previous state, Xt-1 and measurements from 

multiple sensors. 

 

A multi-sensor fusion system is not limited to fusing sensor data from the same 

type of sensor.  For example, a GPS navigation system can provide an INS with a 

position update at fixed intervals.  By properly combining the GPS and INS data, the 

IMU errors in position and velocity can be stabilized.  Examples of GPS-aided INS 

systems can be found in (Panzieri 2002) and (Pinto 2002).  Image sensors can also be 

used to improve dead-reckoning navigation predictions when using an INS, as 
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demonstrated in vision-based inertial systems by Thrun (Thrun 2000) and Sim (Sim 

2005b).  However, to understand how vision sensors can be used to correct an INS, one 

must first understand how vision sensors process information and use it for navigation. 

2.1.3 Image-aided Navigation Systems and SIFT 

Image sensors are found on many computing and navigation platforms (Bellini 

2002; Burschka 2004; Mourikis 2007).  To use these sensors effectively, one must 

understand some image processing and machine vision basics.  The following section 

describes image processing basics, followed by image processing techniques for 

navigation, including feature extraction.  This section describes why features are useful 

for landmark-based navigation, and how to use landmarks for image correspondence.  

Finally, the feature extraction algorithm used in this navigation system is described and 

evaluated for its applicability to navigation.   

The concept of an image, as used in the context of this thesis, is a distribution of 

intensity values projected on a two-dimensional (2-D) plane.  This 2-D plane can be a 

sheet of paper, a computer screen, or even a face of a cube.  Typically, the intensity 

values are converted to a numeric representation whose values are in the range of the 

precision needed for the image processing application.  One constrains the range of 

values by limiting the number of bits per intensity value, thus limiting the numeric 

precision used to describe each pixel.  For example, if the image processing algorithm 

was for text recognition, an acceptable range for intensity values could be (0, 1), to 

indicate the presence or absence of intensity (or color) at each pixel.  Thus one could say 

that a text recognition algorithm only needs 1-bit precision, because the intensity values 
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could be constrained to 1 bit per pixel (bpp).  Precision is tied to the amount of data that 

can be represented per pixel.  A more precise image that had 4-bit precision could take on 

values from 0 to 16, which is equivalent to 16 possible intensity values (or 16 colors) per 

pixel.  To illustrate this effect, compare an image with 1-bit per pixel (bpp) precision (2 

possible values per pixel), to the identical image with 8-bit precision (256 possible values 

per pixel) in Figure 2.3. 

 

 

Figure 2.3:  Image precision comparisons.  The left image is 8 bpp and the right image is 

1 bpp precision.  More information can be obtained from images with greater precision. 

 

In more advanced image systems, such as the human eye, the intensity value at 

any pixel can be represented using more than one “channel”.  For example, a computer 

monitor is trichromatic, because it uses red, green and blue (RGB) as the primary color 

channels.  These colors channels are added together, each supplying an intensity value to 
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represent the amount of that primary color in the overall mix of the displayed color.  

Much like the simple monochromatic images described above, precision is based off of 

the number distinct intensity values that can be represented per pixel.  For example, in an 

RGB system with 8-bit precision per channel, each color can take on 256 distinct values 

and each pixel can represent 2563 different color values.  The resulting system actually 

has 32-bit precision (or 32-bit color), versus 8-bit precision for a single color channel 

(monochrome) system. 

Appropriate representation for image processing varies both by what is needed by 

the image processing algorithm and what kind of sensor equipment is available to capture 

an image.  For example, if a monochrome camera was used to capture an image, it would 

make little sense to convert this image to a more complex trichromatic representation 

unless the image processing algorithm required this representation.  No additional 

information could be gained by adding the extra color channels, since the image has only 

one channel to begin with.  Therefore, many image processing algorithms work using a 

low-precision, monochrome image representation.  The image can be reduced in 

precision to a single-channel monochrome image for processing even if advanced, high-

precision image sensors are available. 

The first step of image-aided navigation systems is feature extraction from an 

image.  These features can be simple, such as corners and edges, or more advanced, such 

as landmarks, colors, or objects.  Feature extraction is performed by an image processing 

algorithm.  Typically, the complexity of the image processing algorithm increases in 

proportion to the complexity of the features being extracted, but the complexity of the 
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extracted features is limited by the precision of the original image.  For instance, a simple 

corner detection algorithm that finds all corners in a monochrome image could process 

images relatively quickly in comparison to a detection algorithm that detects all objects 

that contain four corners.  However, complex features have more value in navigation 

applications because they are typically uniquely identifiable, making them suitable 

landmarks.   

Features can be used for navigation in many ways.  One of the most important 

ways to use them for navigation is through feature-correspondence algorithms.  These 

algorithms work by transforming an image into its representative feature space.  The 

features from an image taken at one point in time are matched to features from an image 

taken at a later point in time.  The simplest way to perform feature correspondence is to 

perform a search for the features in one image over the entire space of another image, 

also known as an exhaustive search, illustrated in Figure 2.4.  This procedure is 

computationally-intensive and time-consuming.  For example, in a system with Nk 

features in image k, the complexity of performing an exhaustive feature correspondence 

search for features in image k+1, in Big-O notation (Knuth 1976) is O ( Nk * Nk+1 ).  

However, when other sensors are available, it helps to use these sensors to 

constrain the correspondence search space.  In an image-aided INS, inertial 

measurements can be used to predict feature locations from one image to the next.  The 

search area can then be constrained to a subset of the features in a successive image that 

are found within a certain distance from the predicted location.  The resulting complexity 

is O(Nk), which can be seen in figure 2.5.  In addition, the difference between the 
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predicted feature location and the actual feature location can be used to resolve IMU 

biases, a topic that is explained in further detail in Chapter 3. 

IMAGE k

IMAGE k+1

Exhaustive Search

 

Figure 2.4:  Exhaustive feature correspondence search.  Extracted features are matched to 

each feature in successive images, resulting in O (Nk * Nk+1) search complexity. 

 

Systems that employ feature matching have been of limited value in the past 

because most image processing algorithms were not suited to navigation purposes.  

Image processing for navigation requires features that can be uniquely identified despite 

movement of the sensor platform.  The platform movement results in features being 

viewed from multiple angles, distances, and among other similar objects.  To accomplish 

this feat, a feature has to have some kind of distinguishable identifier that is invariant to 

changes in orientation, scale and affine warpings.  False identification is especially 

detrimental in feedback-enabled navigation, where the landmark data is used to correct 
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other system sensors.  Misidentification will corrupt the other sensor readings and lead to 

poor navigation predictions. Constraining the search space helps prevent false 

identification by eliminating a subset of possible matches.  However, the main problem 

with using complex features from a computation standpoint is that feature extraction and 

correspondence requires extensive computation, which increases image processing time 

(Heymann 2007:6).  Since images are used as an aid to navigation by correcting other 

sensor readings, a slow image processing algorithm contributes very little additional 

accuracy over the existing navigation sensors. 

IMAGE k

IMAGE k+1

Constrained Search

 

Figure 2.5:  Constrained feature correspondence search.  Features extracted from prior 

images are searched for in a constrained search space in successive images, resulting in 

O(Nk) search complexity. 
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To overcome this problem and perform faster image processing, past systems 

have used a priori environment information to choose features.  One such system, MOB-

LAB, navigated streets by using lines on the road as features (Broggi 1995).  The 

problem with this approach is that the environment becomes un-navigable when lines are 

unavailable, such as when the vehicle goes off-road.  Other systems, such as Minerva 

(Thrun 2000) and (Panzieri 2003) tracked lights and ceiling tiles to determine their 

position at any epoch in time.  Algorithms that use a priori information in this manner 

can be classified into a subset of navigation systems that rely upon reference landmarks 

for navigation.  Such systems often use landmarks with known physical properties or 

fixed coordinates (i.e. waypoints) to help guide and correct the navigation system.  

However, to make an image-aided navigation system work in unknown environments, it 

must choose features that are invariant to scale and rotation without depending upon a 

priori environment information.   

The feature extraction algorithm used in this thesis is the scale-invariant feature 

transform (SIFT) (Lowe 2004).  This algorithm is used primarily for its complexity of 

features, which have a unique identifier that is invariant to scale and rotation.  In addition, 

the identifier itself is not a complex data structure, so feature matching is straightforward 

and matching performance is high (Lowe 1999; Gordon 2004). 

SIFT works by first decomposing an image into a scale-space representation.  

Decomposition results in a different type of information being available at each level of 

decomposition, but also allows the algorithm to separate extrema (local minima and 

maxima) in an image into the scale at which they are most prominent.  Extrema are 
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chosen using the Difference of Gaussian (DoG) from a progressively-scaled set of images 

that have been reduced to a lower level of detail via Gaussian blurring.  Each extremum 

is chosen from the set of DoG images at the same scale, using pixel-wise comparison 

with each neighboring pixel at neighboring scales, but the same level of blurring.  The 

resulting extrema are then filtered to remove points that do not have a high enough 

luminance value or that lie along an edge.  These points are unfit for matching and 

correspondence.  The resulting extrema are assigned a dominant orientation by taking a 

histogram of the gradient in a fixed area around each extremum.  The gradient around the 

extremum is used in conjunction with the dominant orientation to compute a distinctive 

descriptor, which is invariant to rotation.  A more in-depth look at SIFT can be found in 

many published works (Lowe 2004; Heymann 2007; Ke 2004). 

Finally, an image-aided navigation system must take calibration into 

consideration.  Image sensors, particularly camera lenses, suffer from image distortion 

that causes the captured image to look different than how it would look to the human eye.  

The type of distortion depends on the type of lens used, but is usually the barrel type of 

radial distortion, where the image appears to bow outward from the middle of the image 

(Draper 2002).  This is caused by the hemispherical shape of the lens, normally referred 

to as a “fisheye” lens.  Lens distortion can be avoided by using a rectilinear lens with no 

distortion, or corrected by undistorting the image.  Image undistortion is performed by 

using the lens principal dimensions as well as focal and curvature parameters used to 

capture the distorted image, then using this information to map the hemispheric, distorted 

image, onto a 2D plane.  This process is illustrated in Figure 2.6.  Therefore, the degree to 
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which lens distortion can be corrected is related to the precision and accuracy of the lens 

parameters used for undistortion.  The process of determining these parameters is known 

as camera calibration.   

Distorted Undistorted
“flatten” image

 

Figure 2.6:  Camera image distortion removed.  The left image exhibits noticeable 

curvature around the corners, also known as barrel distortion.  The right image is the 

same image after lens calibration and image undistortion. 

 

The calibration of an image-aided system can have a huge impact on the navigation 

predictions.  The navigation predictions are corrected using the movement and disparity 

of features during feature correspondence.  The feature correspondence algorithm is 

based on a flat image model, not a curved image.  Therefore, when the features move on 

the curved, distorted image, their movement will not be translated correctly to movement 

of the sensor platform.  This effect may not be noticed until the sensor platform changes 

position.  To illustrate this point, take the analogy of two ants traveling in 2D space, 

shown in Figure 2.7.  One ant is on a hill, the other ant is on the ground.  They both start 

in the same position relative to an observer with a view from above.  As the ants travel at 
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the same rate, the ant on the flat plane appears to have moved further than the ant on the 

hill.  This is analogous as what happens to features on the undistorted (flat) image versus 

the distorted (hill) image, as the sensor platform changes position.  The features in an 

image will not appear in the predicted location during feature correspondence, resulting 

in higher measurement uncertainty and poor navigation performance.   

Same relative starting 
position

Different ending positions despite 
traveling at the same rate for the 

same time

 

Figure 2.7:  Camera distortion analogy.  The ant on the hill represents features on the 

distorted image, while ant on the ground represents features on the undistorted image. 

 

2.1.4 GPS Navigation Systems 

The Global Positioning Satellite (GPS) System provides civilian and military 

users with precise time and positioning information.  This section provides fundamental 

information behind the GPS system, including a description of each segment and their 
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function.  The way to retrieve position information from GPS is described, along with the 

errors that accompany the position reading.  Lastly, GPS modernization efforts are 

discussed so the reader knows which position errors will potentially be resolved in the 

near future. 

GPS is divided into three segments: space, control, and user.  The space segment 

consists of approximately 24 satellites that orbit the Earth.  The satellites’ orbits are 

arranged such that there are at least six satellites in line of sight from any point on Earth.  

As of April 2007, there are 30 satellites in orbit, mostly comprised of Block II-A through 

Block II-F satellites.  The increased number results in a non-uniform arrangement, but 

provides redundancy and increased availability for GPS receivers.  The research, 

development, launches, and maintenance of the satellite constellation costs approximately 

$750 million per year.  The control segment consists of ground-based monitoring stations 

and a central control station that tracks the satellites, errors in their predicted path, and 

update settings in the satellites via a satellite uplink.  The user segment of GPS consists 

of civilian and military users and their GPS receivers that receive GPS data from the 

satellites.  A typical GPS receiver consists of an antenna and RF receiver, a stable clock, 

and a display to output speed and position information to the user. 

Navigation data is sent from the satellite to the user via two microwave 

frequencies in the L-band; an L1 signal at 1575.42 MHz and an L2 signal 1227.60 MHz.  

Each signal is modulated by one or more codes which shift the carrier phase.  These 

codes are each used for different purposes.  The Coarse Acquisition (C/A) code 

modulates the L1 signal, and repeats a 1.023 Mhz pseudo-random noise (PRN) code 
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every millisecond.  There is a different PRN code for each satellite, so knowing the PRN 

for a specific satellite enables a receiver to pick out the satellite from which it is receiving 

data.  The Precise (P) code modulates both the L1 and L2 signals.  It is a much longer 

10.23 Mhz PRN signal that repeats every seven days.  Because of the length of this 

signal, receivers that have the capability and authorization to access the P code signal 

generally will acquire a satellite using its C/A code, then lock on to the P-code for further 

precision.  The last code that modulates the signals is the navigation message, which is a 

50 Hz signal consisting of data bits that describe the GPS satellite orbits, clock 

corrections, and other system parameters.  This message repeats every 12.5 minutes and 

is modulated onto the C/A L1 signal.  The relationship between the carrier signals and 

codes is shown in Figure 2.8.   

 

Figure 2.8:  GPS signals and codes.  3 types of GPS codes (C/A, P, and navigation) are 

modulated onto carrier frequencies on the L1 or L2 band.  Image from (Dana 2000). 

26 



 

 

The GPS receiver uses the navigation message from the satellites and an internal C/A 

code generator to determine the receiver’s position.  Since the C/A code is modulated 

onto the L1 frequency, the C/A code must be demodulated from the signal.  An 

internally-generated PRN code sequence can be compared to the demodulated C/A code 

by shifting the PRN code sequence in time until a match is found with the PRN code 

from the received C/A code.  The GPS Navigation Message consists of data bits time-

stamped with the time of transmission by the satellite.  The receiver uses the offset 

between the receiver clock and the GPS time from the navigation message to determine 

the time of arrival, or pseudo-range for an acquired satellite. Position is determined from 

multiple pseudo-range measurements at a single measurement epoch. The pseudo range 

measurements are used together with the satellite position estimates based on the precise 

orbital ephemeris data sent by each satellite. This data allows the receiver to compute the 

satellite position in three dimensions at the instant that they sent their signals.  Four 

satellites are normally used to determine 3-D position and time, as shown in Figure 2.9.  

However, there exist several potential pitfalls to GPS-based navigation that come 

from sources of error inherent to GPS.  First, the GPS signal coming from the satellite is 

very weak.  This means that the signal can easily be jammed or interfered with by non-

GPS electromagnetic radiation at the same frequency.  This interference can come from 

natural sources, such as electrical storms or solar flares, or from man-made signals.  In 

the past, such sources have led to widespread GPS unavailability, and in worse cases, 

intentional GPS misguidance (Vizard 2003).  In addition, the signal is so weak that it 
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cannot penetrate buildings or the ground, making traditional GPS navigation indoors or 

underground currently impossible. 

 

Figure 2.9:  Position calculation using GPS.  Using 4 GPS satellites, the GPS receiver 

finds the pseudorange and measured range to each acquired satellite to get a 3-D position 

and time information.  Image from (Dana 2000). 

 

Second, the GPS signal is subject to atmospheric interference.  As the C/A and 

P/Y signals travel through Earth’s atmosphere and ionosphere, the signal is affected by 

refraction.  The receiver then calculates an incorrect delay from this signal, which in-turn 
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negatively affects the position and distance calculations.  This condition is worse for 

satellites near the horizon. 

Third, GPS is affected by a condition known as multipath, where the GPS signal 

bounces off of terrain in the environment before reaching the GPS receiver.  Multipath 

error also results in incorrect delay calculations by the receiver.  This condition is found 

more often in urban areas, where there are more structures that reflect GPS signals.  

Recent research into multipath problems in wireless networks has found that increased 

signal strength actually intensifies reflected signals (Ladson 2006)., so simply increasing 

the GPS signal power will cause additional multipath problems. 

GPS modernization is currently underway.  Of the many improvements planned, 

the most influential for navigation are additional signals, frequencies, and improved 

signal strength.  These improvements will improve signal accuracy and alleviate some of 

the potential problems, such as atmospheric interference.  However, the problems of 

multipath and GPS unavailability indoors and underground will still exist, which provides 

more impetus for the exploration of GPS-alternative navigation techniques. 

2.2 Biologically-inspired Navigation 

The navigation system presented in this thesis is inspired by biological systems.  

Many animals have the innate ability to navigate naturally simply using biological 

sensors.  The problems with GPS are common to many other current navigation 

platforms, so several biological systems were researched in an effort to determine their 

viability for a GPS-alternative sensor platform.  Specifically, sensors that could work in a 

stand-alone environment, unaffected by interference and jamming were desired.  
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Some animals, such as sea turtles, use the static electro-magnetic fields (EMF) of 

the Earth to navigate (Lohmann 2001).  By using the magnetic inclination angle and field 

intensity of these naturally-occurring signals, loggerhead sea turtles can navigate from the 

Eastern coast of the United States around the Atlantic Ocean, and back over a period of 

several years.  The inclination and strength of the EMF signals provide the turtles with 

both a direction and a relative sense of position.  However, scientists have found that by 

artificially duplicating the EMF signals, they can confuse the turtles’ innate navigation 

ability and cause them to navigate as they would if the EMF signal was naturally 

occurring in the environment.  Since EMF signals are abundant in the urban environment 

(Foster 2005) and are very easy to duplicate, any precision navigation system would have 

to account for the presence of artificial EMF signals and compensate accordingly.  EMF-

source detection and validation algorithms could be very complex and computationally 

costly.  Therefore, EMF is not a good candidate for a GPS-alternative. 

Ants and many other insects use chemical trails, such as pheromones and 

olfactory senses, to follow a path (Sharpe 1998; Marques 2002).  These navigation 

systems work because paths that lead to food or safety are traveled more often, and the 

scents or pheromones become stronger along that path.  This idea could be applied to 

GPS-alternative navigation by placing pheromone or other chemicals along a path in 

order to excite the olfactory senses during navigation for multi-agent systems.  However, 

chemicals are subject to dissipation over time. In addition, most chemical signals can be 

replicated, so a malicious agent could fool the olfactory sensors by laying down a 
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chemical trail to confuse or mislead the navigation system.  Therefore, this method of 

navigation is susceptible to many of the same problems as GPS. 

More elaborate biological navigation systems, such as those found in bats and 

dolphins, use sonar signals to get an estimate of terrain and distance.  Bats are able to 

perform synthetic aperture sonar, which determines distance and direction information 

for all objects in the sonar “scene”, and reconstruct that objects shape (Griffin 1950; 

Simmons 2002).  The shapes are then classified by the bat, allowing it to “see” an object 

and classify it.  This sensor would therefore be extremely useful for a mapping 

application or landmark identification algorithms.  However, sonar signals are susceptible 

to interference, jamming, and changing medium, and therefore exhibit the same 

weaknesses as GPS systems, making them unsuitable as a GPS-alternative sensor for 

navigation. 

Animals that use passive sensors, such as bees, migratory birds and humans, 

however, are not susceptible to these problems.  These animals all use inertial and 

imaging sensors to pick out landmarks in the environment and navigate from landmark to 

landmark with relative ease (Tripp 2001; Wehner 1996).  In addition, these sensors are 

passive, self-contained and do not have the same weaknesses as GPS.  Interestingly, 

desert ants also use this method of navigation in favor of pheromone navigation in 

unknown environments (Roumeliotis 2000).  The most common way to perform image-

aided navigation is to use visual sensors to pick out a landmark, or several landmarks, 

and navigate to that landmark, also known as waypoint navigation.  The position between 

any set of landmarks can be determined using dead-reckoning techniques and the 
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animal’s inertial sensors.  However, if the animal’s inertial sensors are imprecise, then the 

determined position will be poor.  Animals have overcome this problem by resetting their 

navigation state using a reference landmark with a known position (Knaden 2006).  If the 

animal can uniquely identify landmarks in its environment, then it can reliably determine 

its position in the environment relative to this unique landmark.  For instance, an ant will 

get lost quickly after leaving the nest.  However, if it periodically returns to the nest to 

reset its navigation state, the ant can navigate more precisely for longer periods of time. 

The navigation system presented in this thesis is similar to that of landmark-

following animals.  By choosing uniquely identifiable landmarks and determining the 

distance to these landmarks, a navigating body can determine how far a landmark should 

move in its field of view, based on the relative movement of the navigating body.  The 

relative movement of the navigating body is obtained from inertial motion sensors, much 

like those present on the animals described in this section.  The landmark movement can 

thus be used to correct inertial readings and corrected inertial readings can be used to aid 

landmark location predictions. 

2.3 A Brief Introduction to the Graphics Processing Unit 

 The following section provides background information on the Graphics 

Processing Unit, or GPU.  A goal of this thesis is to harness the power of the GPU to 

perform image processing needed for navigation computations.  To understand how this 

can be accomplished, one must be familiar with fundamental GPU concepts.  This section 

provides information on how the GPU can be used to perform tasks normally performed 

by the CPU.  GPU data processing flow is fundamentally different than the CPU, so the 
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basics of the GPU rendering pipeline is covered to help the reader understand the flow of 

information through the hardware.  Programming models, including high-level shading 

languages and low-level assembly are briefly covered.  Lastly, performance data for 

GPU-accelerated tasks is reviewed so the reader has a baseline for expected GPU 

acceleration for the navigation system in this thesis. 

2.3.1 General-Purpose Computation using the GPU 

 The GPU was invented because graphics-intensive applications such as video 

games and computer-aided design (CAD), required increasing numbers of complex 

calculations over large sets of uniform data types, and these applications were 

experiencing a bottleneck in CPU processing power (Trancoso 2005).  To overcome this 

bottleneck, manufacturers had a choice of building faster CPUs to handle the 

computational workload, or to build a hardware graphics co-processor that could perform 

specialized calculations on the graphics data.  The GPU thus evolved as a hardware co-

processor to perform calculations on large sets of uniform graphics data.  The CPU, on 

the other hand, remained suited for a multitude of different calculations on elements of 

varying data types.  Over the years, the GPU became faster, the processing pipeline 

became more customizable, and the instruction sets became more diverse.  These 

improvements were originally intended for richer graphics, but the idea of performing 

computation on data beyond the graphics primitive domain on the GPU received 

increasing attention.  The idea of extending GPU computation beyond the graphics 

domain became known as general-purpose computing on the graphics processing unit, or 

GPGPU (Thompson 2002). 
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There are three major reasons to use the GPU for general-purpose computing 

(Metelitsa 2005).  First, the GPU is commodity hardware and comes standard on almost 

every commercial off-the-shelf (COTS) computer sold today.  This comes with a huge 

advantage in price / performance ratio, since R&D and manufacturing costs for 

equipment are constrained to the commercial market.  Secondly, although the clock rate 

of GPUs are lower than CPUs, the parallel architecture of the GPU and the locality and 

speed of GPU memory results in an overall throughput rate that is much higher than a 

CPU, and increasing at a rate faster than Moore’s Law (Moore 1965).  Lastly, since the 

GPU acts as a co-processor, computations that are performed on the GPU free up the 

CPU to perform other tasks.  

GPGPU also has a few drawbacks.  First, the architecture and processing flow of 

the CPU and GPU are fundamentally different.  The CPU acts as a multiple-instruction, 

multiple-data, single element processor.  It has a wide set of instructions for a wide range 

of data types, but performs sequential processing, or computations on a single element at 

a time.  The GPU acts more like a single-instruction, multiple-data, stream processor.  It 

has a limited range of instructions for a very limited set of data types, but can perform 

these computations in parallel on a large set of data, known as a stream.  This 

fundamental difference is best illustrated by a pipe-and-filter architecture (Garlan 1994), 

as shown in Figure 2.10.  Although this design is a strength of the GPU, it introduces a 

challenge to the GPGPU programmer: namely, how to adapt from the sequential 

processing model of the CPU to the stream processing model of the GPU. 
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Figure 2.10:  A comparison of GPU and CPU-based pipe and filter architectures.  The 

CPU must perform operations upon data elements in sequence, whereas the GPU can act 

upon Stream elements in parallel. 

 

2.3.2 GPU Rendering Pipeline 

The GPU rendering pipeline, which creates a 2D image from 3D geometry and 

textures, has evolved from a fixed-function implementation to the current fully-

programmable pipeline.  The original goal of GPU manufacturers was to maximize 

throughput of data elements to the screen.  The goal has not changed, but manufacturers 

are now also focusing on building in as much programmability as possible without 

compromising performance (NVIDIA 2007). 

To understand GPU rendering, one must first understand the components of a 

GPU program.  A GPU program consists of commands, vertices, fragments and textures.  
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Vertices are points in 3D space that are connected to make up geometrical objects, such 

as lines, triangles, and polygons.  Fragments are the equivalent of pixels on the screen, 

complete with color and location information.  Textures are images that can be projected 

onto a geometrical object.  Some authors have described textures as something like 

“shrink wrap” (Metelitsa 2005) for geometry.  These textures are applied by performing a 

texture lookup, which changes the color value of a set of fragments based on the size, 

shape, and color value of the texture.  GPU commands specify the connection order of 

vertices, which textures to apply, and which vertex and fragment shader programs to 

load.  All of these components are connected together in the programmable GPU 

rendering pipeline.  

The programmable GPU rendering pipeline begins in the CPU.  The CPU must 

interact with the GPU via the video card manufacturer’s drivers and the hardware API 

used to interface with those drivers.  The application specifies the 3D geometry and 

textures to be displayed on the screen.  This data may or may not be stored in system 

memory for future use, depending on the application.  This information is sent as vertices 

to the GPU over the system bus, and then placed in high-speed memory resident on the 

GPU.  The GPU retrieves the data placed in video memory and computes a 2D image of 

the geometry using vertex processors and rasterization.  This process can be customized 

using a vertex shader program.  The GPU then computes the appropriate color for each 

fragment using a texture lookup, fragment shader program, or a combination of the two.  

The resulting 2D image can either be displayed to the screen by writing to the GPU frame 
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buffer, or saved for future display (or another rendering pass) by writing to an off-screen 

pixel buffer.  This rendering loop is illustrated in Figure 2.11. 
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Figure 2.11:  The GPU rendering pipeline.  Textures, vertices, and commands are created 

in the user program, interpreted by the hardware drivers and sent into main memory.  The 

vertices are sent to the vertex processor, rasterized to a 2D graphics representation and 

sent to the fragment processor. 

 

2.3.3 GPU Programming Languages 

As mentioned previously, the GPU and CPU architecture and hardware are 

designed for different purposes.  Programmers must understand and account for these 

differences when writing GPGPU programs.  Although the GPU is capable of very 
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powerful operations, the type and number of operations are limited in comparison to the 

CPU.  For instance, the input and output stream size and precision, as well as the 

temporary registers and the number of instructions are all limited by the GPU hardware.  

In addition, there is no jumping, looping and very limited branching native to GPU 

programs.  These limitations have been compensated for by using multi-pass rendering 

and high level programming languages that can emulate branch and loop behavior, but at 

a high rendering cost.  This section provides an overview of some of the more common 

GPU programming techniques.  An illustrated overview of the discussed techniques can 

be found in Figure 2.12.  
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Figure 2.12: Hierarchy of GPU programming tools.  Although hardware abstraction via 

language extensions and generalized stream processing languages increases portability 

and maintainability, performance and efficiency suffer. 
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Much like the CPU, the most computationally-efficient way to program a GPU is 

by programming in assembly language using the application’s graphics API.  Typically, 

video card manufacturers implement both the OpenGL and DirectX graphics APIs in the 

GPU hardware driver.  Programs can either be passed as a character string to the 3D 

graphics API or loaded as an object.  Data is operated on as a texture, functions are 

performed on an entire set of vertices or fragments using the GPU rendering pipeline, and 

multiple rendering passes are performed using copy-to-texture or render-to-texture 

operations.  The basic tenets of GPGPU programming using the GPU hardware APIs can 

be found in (GPGPU 2007).  While programming in assembly language may be the most 

computationally-efficient, it is time-consuming, mundane and error-prone for the 

programmer.  In addition, much like programs written in CPU assembly, programs 

written in GPU assembly lack usability, maintainability, and portability (Metelitsa 2005). 

Another efficient way to perform GPU programming is by using a high-level 

shading language, such as Microsoft’s HLSL, the Open Standards Group’s GL shading 

language (GLSL), and Nvidia’s C for Graphics (Cg).  These languages provide 

programmers with a high-level syntax, operations and data structures for simplified 

programming, similar to what high-level languages like C did for CPU assembly 

language.  However, each of these high level languages requires a graphics API for 

programming.  HLSL depends upon DirectX, GLSL depends upon OpenGL, and Cg can 

be compiled to use DirectX, OpenGL or the Cg API. 
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The major disadvantage of the high-level shading languages is that the 

programming model is tailored toward graphics processing rather than general-purpose 

computation.  These languages are limited to performing operations on textures, vertices, 

fragments, and other data structures in the graphics hardware domain.  However, there 

are a few hardware-abstracted languages that have been created for efficient stream 

processing and general computation using the GPU.  Most of these languages merely 

provide the programmer with automated shader program creation.  These languages 

encapsulate the high level shading languages, such as GLSL or HLSL, to provide an 

interface to the GPU hardware layer.  Other hardware-abstracted languages are more 

efficient because they call into the graphics API to create custom shader programs.  

These languages are usually implemented as a library or extension to the application’s 

programming language that wrap GPU API calls.  Examples are the University of 

Waterloo’s SH (McCool 2004) for C++ and Microsoft’s Accelerator (Tarditi 2005) for 

C#.  

Another approach for GPGPU programming is to create a new language with a 

new runtime environment.  Two platforms take this approach; Stanford’s Brook GPU 

language (Buck 2004), which is an extension to C, and Peakstream (Peakstream 2007), a 

new project sponsored by ATI.  Brook uses programs written in the Brook GPU language 

and ANSI C and the Brook runtime to create customized stream programs.  The downfall 

of this technique is that the resulting stream programs are not very efficient, since the 

shader commands are not tailored to any specific hardware driver, platform, or 

customized for the type of GPGPU program being written.  The Peakstream language 
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uses a virtual machine (VM) approach, much like Java, to make a very portable solution 

that can work across many platforms and types of hardware (Peercy 2006).  Since this 

project is still in development, initial results have shown only a modest speedup from 

GPU acceleration.  However, the Peakstream project has great potential, since the VM 

can be updated and modified for future platforms and video hardware, and support more 

powerful GPU commands that would increase the efficiency and performance of the 

resulting programs. 

Recently, NVIDIA has produced a new GPU with an open architecture that is 

built as both a graphics and GPGPU powerhouse.  This hardware is coupled with a new 

GPGPU programming SDK called CUDA.  CUDA gives the GPGPU programmer the 

ability to read and write any area of video memory while at the same time abstracting the 

hardware from the programming language.  The result is that a programmer using CUDA 

can program in much the same way as they would on a CPU, but perform their operations 

in parallel using GPU hardware (NVIDIA 2007).  In addition, the GPGPU API is 

supported natively by the hardware, so CUDA commands do not need to be interpreted 

by the hardware-layer API like OpenGL or DirectX, making CUDA more efficient than 

the current generation of GPGPU APIs. 

2.3.4 Performance 

 GPU and CPU performance can be compared in many ways.  One of the most 

basic comparison metrics is the measure of floating point computations possible per 

second (FLOPS).  Since most modern processors are capable of billions of FLOPS, the 

performance metric often used is gigaFLOPS (GFLOPS).  Fortunately, there is a 
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benchmark available to compute just that; the Linpack benchmark (Dongarra 2001).   The 

Linpack benchmark is a measurement of the performance of a dedicated system in 

solving a dense system of linear equations.  The test is reliable, repeatable, and 

commonly accepted as a valid measure of peak computation performance.  More 

importantly, the test results can be used to compare the general computation ability 

between different computers and different computing architectures.  The comparison of 

GFLOPS ratings between some common NVIDIA GPUs and leading Intel CPUs is 

shown in Figure 2.13.  

 

Figure 2.13: GFLOPS comparison between GPU and CPU.  The GFLOPS rating of 

CPUs is growing at the pace of Moore’s Law, while GPU ratings are growing much 

faster.  This is due to superlinear speedup achieved through parallel computation (Akl 

2001).  Image from the Nvidia CUDA programming guide (NVIDIA 2007). 
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Knowing that the GPU computational performance should be much greater than 

the CPU performance, the next logical step is quantification of how much better the GPU 

performance should be.  The simplest way to quantify this performance is through a term 

known as speedup.  Speedup is the difference in computation time between the original 

process (T1) and the new process (T2), as shown in equation 1. 

2

1

T
TSpeedup =       (1) 

The metric used for speedup comparison is SIFT feature extraction time.  The 

computation time to extract SIFT features can be compared for images with different 

numbers of features and different resolutions.  The baseline SIFT performance data in 

Figure 2.14 was taken from Sudipta Sinha’s implementation (Sinha 2006).  The results 

lead to an expected speedup of 6x-15x for GPU-accelerated feature extraction.   

 

Figure 2.14: Comparison of CPU and GPU SIFT feature extraction time.  Expected times 

based on GPU-SIFT program by Sudipta Sinha.  Image courtesy of (Sinha2006).  
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A 2002 study by Thompson (Thompson 2002) of GPGPU techniques was used 

for the speedup baseline shown in Figure 2.15.  The speedup for CPU vs. GPU matrix 

multiplication can be expected to be a function that increases linearly with matrix (or 

image) size. 

 

Figure 2.15: Expected runtime for GPU vs. CPU matrix multiplication.  As expected, the 

CPU run time increases exponentially with increasing matrix size.  However, GPU run 

time increases linearly.  Graph from a survey of GPGPU techniques (Thompson 2002). 

 

Despite the method used to acquire and quantify performance data, the expected 

results may differ from the actual results.  Actual performance and speedup is a result not 

only of the algorithm being run, but the speed and efficiency of the hardware, software 

application, and underlying operating system.  In addition, the speedup from GPU-

accelerated image processing is only a fraction of the overall navigation system.  To take 

44 



 

advantage of this speedup, there must be no bottlenecks in GPU or CPU processing in 

other parts of the system. 

2.4 An Overview of Real-time Processing 

 One of the goals of this thesis is to create a system that could navigate in real-

time.  To understand what was needed to accomplish this feat, one must understand what 

it means for an application to run in real-time.  This includes historical and modern 

definitions of a real-time system.  In addition, when designing an application for real-

time operation, the system must be categorized as a hard or soft real-time system and the 

corresponding constraints must be taken into consideration. 

2.4.1 History of Real-time Processing  

Real-time processing has been redefined many times over the past few decades.  

The term originally referred to any system that could perform computations at a rate that 

matched or exceeded that of the real process it was simulating (Heitmeyer 1996).  This 

definition changed during the advent of thread priority scheduling and programmable 

microcontrollers.  These technologies allowed a process to pre-empt the operating system 

and schedule a process to run for an arbitrary amount of time.  Precise thread scheduling 

resulted in increased reliability and predictability, since the application could be given a 

time constraint in which it must complete its task.  However, if the task was not 

completed in time, the application could either fail or continue, which led to two separate 

schools of thought for real-time process scheduling.  
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Current real-time systems are now divided into two categories; hard real-time 

systems and soft real-time systems.  Both categories are based on constraining a task 

using a deadline from an event to a system response.  The two differ in that a hard real-

time system considers the system response after a deadline to be useless, whereas a soft 

real-time system will tolerate a missed deadline (usually with some impact on 

performance), and continue to operate (Juvva 1998).  Hard real-time systems are thus 

best suited to safety-of-life applications, while soft real-time systems are suited to 

applications that involve concurrent access with changing situations. 

2.4.2 Real-time Constraints 

Hard and soft real-time systems can be considered constraint-based systems, 

where the constraint is the time from event to system response.  A hard real-time system 

must complete its task in the constrained timeframe or fail.  A soft real-time system must 

complete its task in the constrained timeframe or suffer degraded performance.  However, 

the type of constraint (hard or soft) does not necessarily relate to the length of time 

available to complete its task.  In other words, some hard real-time systems have a longer 

deadline than soft real-time systems. 

Deadline calculation is usually application-specific and depends both on the 

system constraint type (hard or soft) and the desired level of performance.  For instance, 

in an application such as online game play, the goal is to minimize ‘lag’, which is the 

time between when a user enters a command and the online players are updated with the 

effects of that command.  The desired level of performance is instantaneous effect, or 

zero-lag, which is unachievable, because the deadline is affected by time-consuming 
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factors such as network speed, command processing time and the time necessary to 

update online users.  The deadline can be computed by the network speed and the time it 

takes for the game to propagate effects from a command to the players.  If the game had a 

real-time deadline, it could perform one of two operations if the deadline was exceeded.  

The game could fail, by disconnecting the players and exiting, making it a hard real-time 

system.  On the other hand, the game could tolerate the missed deadline by pausing game 

progress until all players had been updated.  This degraded service in a soft real-time 

system is preferable for this system example.   

However, the deadline for an anti-lock brake system might be computed in a 

much different way.  The anti-lock brake system on a car is designed for safety-of-life, 

which typically dictates a hard real-time system.  The deadline would be computed using 

the stopping distance of the car, the effectiveness of the brakes, and the anticipated 

reaction time for the driver.  Designers will typically first establish the constraints for a 

hard real-time system, then design the system to meet those constraints.   

Additionally, real-time systems can utilize a dynamic deadline (Kopetz 2002).  

Such systems are characterized by a non-fixed constraint time from event to system 

response.  Take the online game mentioned previously as an example.  The deadline can 

be determined by timing the network speed as well as the application response time.  

However, if the game is played over a slower network, or if a player on a slower machine 

is connected, the deadline could be adjusted longer.  The longer deadline results in 

additional lag, but the system will behave more predictably.  Dynamic deadlines are also 

useful for multi-sensor platforms.  The deadline for a real-time system could be adjusted 
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for the acquisition rates of the different sensors, which may be added, enabled, or 

disabled while the system is running. 

2.4.3 Real-time Scheduling and Design 

Real-time systems are often managed by a scheduler.  The scheduler can be either 

pre-emptive or non pre-emptive.  The pre-emptive scheduler will interrupt a process if it 

has not completed its task by the deadline.  A non pre-emptive scheduler will allow a task 

to run to completion before scheduling a new task, so processes are never interrupted.  In 

addition, a scheduler also has a priority scheme that is used to schedule processes.  Some 

common scheduling algorithm are earliest deadline first (EDF) and least laxity (LL).  

Although these scheduling algorithms have been proven optimal on single-processor 

computers, they have been proven sub-optimal on multi-processor systems (Kopetz 

2002), due to task priority issues. 

   Whether the system is hard or soft, pre-emptive or non pre-emptive, one of the 

goals is always to minimize the response time of the system.  The response time is 

governed by the choice of system.  For example, the shortest guaranteed response time 

for a non pre-emptive system is the longest task time plus the shortest task time (Kopetz 

2002).  Therefore, when designing a real-time system, one must always keep the response 

time factor as a priority and choose appropriate real-time system constraints and 

scheduling system.  This thesis was concerned primarily with non-pre-emptive, soft real-

time constraints, which consisted of minimizing the time between the event and system 

response for minimal latency. 
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2.5 Object-oriented Software Design Principles 

The navigation system presented in this thesis was designed as a component-

based object-oriented system.  Object-oriented design (OOD) can be very complicated, 

and there are many software engineering tools and processes that can be used for OOD.   

One such method is the rational unified process, or RUP, which evolved as an improved 

spiral model (Larman 2005) process.  The heart of RUP is comprised of six key 

principles, summarized in Table 2.1.   

Table 2.1. Six key principles of the Rational Unified Process 
Process Name Description 
Adapt the Process The OOD process should fit the organization, 

adapt it as necessary. 
Balance Stakeholder Priorities Project goals should be a balance of what the 

software designers want and what the business 
goals are. 

Collaborate Across Teams Communication with the other software architects 
on the project is not just expected, it is essential. 

Demonstrate Value Iteratively Deliver projects iteratively, rather than having 
nothing concrete from start to finish except the 
final product. 

Elevate the Level of Abstraction Use software patterns and frameworks for code 
resuse. 

Focus Continuously on Quality Perform quality checks and automated tests at 
each iteration. 

 

These principles are used to guide decisions made during the RUP phases.  The 

RUP consists of four distinct phases; inception, elaboration, construction and transition.  

Inception consists of meetings with stakeholders and discussion of requirements, usually 

resulting in the initial budget, schedule, and a set of use cases that diagram the desired 

interface and functions of the software.  The elaboration phase is where the project begins 

to take shape.  Most of the use cases are defined during elaboration, as well as an 

identification of the major risk areas.  In the construction phase, software engineers 
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develop the major components of the software, starting with the highest-risk features.  

Lastly, in the transition phase, the software is transformed into a state that will be usable 

by the end-user.  

Another important consideration during software design is the software 

architecture that is used.  The software architecture can be considered the skeleton or 

framework of the system.  Just like there are many types of skeletons in the world, there 

are many varieties of architectures available for software design.  These architectures can 

also be composed and adapted for specific problems.  Since the real-time system 

architecture consisted of multiple-sensors acting on an underlying system state, the 

decision was made to use the model-view-controller (MVC), illustrated in Figure 2.16 

and blackboard architecture, illustrated in Figure 2.17.  

Model
(Program State)

View
(User Interface) Controller

(Program Logic)

 

Figure 2.16: Model-view-controller architecture.  Lines indicate visibility of lower layers.  

Higher layers can also affect change to lower layers. 

 

The MVC architecture is used for separation of concerns, so that software 

components can be changed or removed with little to no effect on the rest of the system.  
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This is accomplished by layering, where higher layers have knowledge of and can affect 

changes to the lower layers, but not vice-versa.  The model component, accessible by the 

controller and view components, contains the program state, consisting of variables and 

data structures.  The controller typically drives changes to the model, based on inputs 

from the view component and any control policies defined at a system level.  In addition, 

if the software system needs to access system hardware, such as attached sensors, the 

hardware control routines are often built into the controller component.  The view 

component typically consists of the user interface and any user command parsing, display 

routines, and menus needed for user interaction.  The view component is often operating-

system dependent, since most operating systems have a built-in windowing system.  

Blackboard (Data Repository)

Sensor Data Control Policies

Sensor
Controller

Control Agent
Control Agent

 

Figure 2.17: Blackboard Architecture for multi-sensor, multi-agent systems.  Control 

policies and sensor data is stored in the blackboard, which is shared between multiple 

sensor controllers that write the sensor data, and control agents that use the data and set 

control policies. 
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The blackboard architecture was chosen because it is typically used to decouple a 

multi-sensor, multi-agent platform.  The blackboard architecture uses a central data 

repository (blackboard) object to which many sensors can independently write.  The 

blackboard can then be accessed by control agents that use the sensor data.  In addition, 

the blackboard can be used to hold access policy information, which dictates the behavior 

of the control and sensor agents.  A similar multi-sensor fusion architecture has been 

applied to the problem of Network-Centric Warfare, which requires integration of 

multiple sensors while performing persistent data retrieval (Landing 2006).  The sensor 

acquisition problems and architecture solutions are similar between these systems, which 

help to validate the decision to use the blackboard architecture for this navigation 

problem.  The blackboard architecture also integrates well with the MVC architecture, 

since the blackboard can act as the underlying model, while sensors and control agents 

are controller objects that access and change the model.  This relationship is illustrated in 

Figure 2.18.   
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Model
Blackboard (Data Repository)

Sensor Data Control Policies

Sensor
Controller

Control Agent
Control Agent

View
 

Figure 2.18: MVC Architecture integrated with blackboard architecture.  Sensor data and 

control policies are stored in the model, or state, of the system.  Data is shared between 

the sensor controllers and control agents. 

 

2.6 Summary 

Many fundamental concepts were presented in this section.  First, the idea of 

precision navigation using an inertial navigation system and image-aiding were 

presented.  The GPS navigation system and its flaws were briefly mentioned.  The next 

topic covered was the concept of biologically-inspired navigation systems, and which 

system worked best as a GPS-alternative navigation system. 

The next topic covered was general purpose computation on the graphics 

processing unit, or GPGPU.  The fundamentals of GPU processing, programming, and 
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rendering were covered.  In addition, the problems with porting CPU-based sequential 

programs to GPU-based stream programs and alternatives were explored.  The GPU 

section concluded with expected speedup values for GPU acceleration for feature 

extraction. 

The next topic of interest was real-time processing.  The history and definition of 

real-time processing was first presented, followed by information on more modern 

definitions of real-time processing, including deadlines and real-time constraints.  The 

challenges associated with real-time processing were also mentioned in the context of the 

material presented in this thesis. 

Lastly, the topic of software design principles was covered.  The majority of the 

design principles were about multi-sensor integration using the MVC and blackboard 

architecture.  Software design patterns and the RUP were also covered, as these design 

elements were utilized during the software engineering section of this thesis.  The 

software engineering techniques employed in this thesis were paramount to the overall 

speedup over the existing navigation system. 

The intent of this section was to provide the reader with a theoretical background 

to understand the challenges in the software and hardware design of the navigation 

system presented in this thesis.  It is a challenge just to get an image-aided inertial 

navigation system to function.  It takes considerable effort to get such a system to work in 

real-time.
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III.  Methodology 

The purpose of this chapter is to describe the design of the navigation system 

presented in this thesis.  The navigation system design is divided into two primary areas; 

hardware and software.  In the hardware design sections, the overall concept and goal of 

the hardware design is discussed, followed by the interface and component choices.  

Additional issues of power consumption and component synchronization are evaluated, 

resulting in the final design.  The software design is approached from the software 

engineering standpoint.  The use of software engineering design principles, such as the 

RUP and design patterns, is discussed.  The details of the implementation are presented 

from the standpoint of efficient, concurrent, real-time design.    

3.1 Hardware Design 

The hardware used for this thesis was designed for two purposes; to perform 

concurrent capture and image processing, and to allow for real-time navigation.  The 

computing platform and sensors were chosen such that they could be controlled via a 

real-time scheduler, so data would be immediately available for use in the real-time 

navigation component.  In addition, three principles drove hardware design for this thesis; 

mobility, compatibility, and precision.  This had an effect on what IMU, image sensor, 

computing platform, and power source was selected for the system.   

As mentioned in chapter 2, an inertial measurement unit is a trade-off of precision 

for mobility.  The tactical-grade Honeywell HG-1700 IMU, for example, measures 33 

cubic inches and 726 grams.  It has a maximum gyro bias of 10 degrees per hour.  

However, the consumer-grade Crista IMU that was used in the system is only 3.2 cubic 
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inches and weighs 37 grams, but has a maximum gyro bias of 36 degrees per hour.  Table 

3.1 reviews some common IMUs and their specifications from their manufacturer’s 

technical data sheets.  The Crista was chosen because mobility was more important than 

precision, since the inertial sensor was being corrected by the image sensors. 

Table 3.1. Common IMU specifications 
IMU Size  

(in3) 
Weight 
(grams) 

Gyro Bias  
(deg / hr) 

Random Walk 
(deg / rt hr) 

Drift  
(nmi / hr) 

Crista 3.2 37 12 - 36 6.48 1 
MIDG II 2.2 55 1 1.7 1 
HG-1700 33 726 1 - 10 0.125-0.5 1 
HG-1900 20 454 0.3 – 10 0.1 1 
HG-9900 103 2951 .003 .002 0.8 

1 data unavailable 

 

The image sensors chosen for the hardware design were IEEE 1394 (Firewire) 

cameras.  The Firewire interface provides a sustained data transfer rate of 400 Mbps, 

which is a good backbone for data communications with the computing platform.  By 

contrast, the Universal Serial Bus (USB) 2.0 interface provides a sustained data rate of 

480 Mbps.  However, most USB cameras are not capable of the high-resolution imagery 

that Firewire cameras are capable of.  In addition, the IEEE 1394 camera specification 

(IEEE 1998) defines a common driver architecture called DCAM, which vendors can 

optionally implement.  What this provides the programmer with is a common API that 

can be used to run any DCAM-compliant camera connected via the IEEE 1394 bus, 

which provides “plug and play” sensor capability.  Firewire cameras were chosen for the 

image sensors due to the possibility of a unified interface, enhanced compatibility, and 

precision. 
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The computing platform was chosen because of its compatibility, mobility, and 

capability of high-precision computation.  One of the hypotheses for this thesis was that 

the image processing step of image-aided navigation could be offloaded to the GPU, 

which necessitated the use of a system that contained a GPU.  There were many desktop 

computing workstations available, but a laptop computer is much more mobile.  The 

computing platform choice was a trade-off of computation ability for mobility.  For 

instance, a quad-core processor machine with two parallel video cards could have been 

chosen, and probably would have handled the task very well, but one of the goals is to get 

the navigation system portable enough to be used on vehicles, which requires a smaller 

form factor.  Two laptop computers were acquired and used for the computing platform.  

The first was a small, light, ultra-portable business laptop containing a hybrid, hardware-

integrated GPU.  The second was a larger, more powerful, yet still very portable gaming 

laptop.  The specifications of each system are laid out in Table 3.2. 

Table 3.2. Computing Platform Comparisons 
Mfg Model CPU  GPU GPU Stats RAM Wt (lbs) 
Sony SZ220 T2400 

1.83 GHz  
2 MB cache 

NVIDIA 
GeForce Go 
7400 

128 MB shared 
3 : 4 : 4 : 2  1 

 

1 GB 
DDR2 
533 MHz 

4.07 

Dell XPS1710 T7200 
2 GHz 
4 MB cache 

NVIDIA 
GeForce Go 
7950 GTX 

512 MB 
8 : 24 : 24 : 16  1 

 

2 GB 
DDR2 
667 MHz 

8.7  

1 Vertex Shader Units : Pixel Shader Units : Texture mapping units : Render Output Pipelines 

 

It is important to note, however, that these laptops are not the state-of-the-art in 

mobility.  Embedded hardware has always had a strong foothold as the ultimate portable 

computing device.  However, embedded hardware has not evolved to the point where it 

can support a modern programmable GPU.  In fact, embedded hardware has just begun to 
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adopt the PCI-express bus architecture, so there is a potential development time of years 

before embedded hardware has the capability to support programmable graphics 

hardware.  Compounded onto this problem is the issue of driver compatibility with 

embedded hardware and common operating systems.  Although Linux, Unix, and 

Microsoft operating systems exist for most embedded hardware platforms, the driver 

support is usually poor for the hardware on these embedded systems, resulting in 

additional development time to write driver software and potential conflicts if additional 

sensors are added to the computing platform. 

3.2 Hardware Integration 

After all the hardware was chosen, it had to be integrated.  Timing was the major 

problem that had to be overcome during integration.  As mentioned previously, the 

image-aided inertial system works by propagating IMU data and image sensor data to 

determine position.  In addition, the trajectory of the navigating body is used to predict 

feature locations for an image correspondence search.  The results of feature matching are 

used to correct the system trajectory via a feedback mechanism in the Kalman filter.  

Accurate timing is paramount.  If the image sensor readings are not integrated into the 

projected IMU trajectory at the correct time, the feature correspondence predictions will 

be incorrect, causing incorrect trajectory corrections due to the feedback mechanism.  In 

addition, binocular vision requires precise timing and synchronization between the image 

sensors.  There are two common ways to approach system timing.  One can either 

generate a master clock signal and synchronize all the hardware components to this 

signal, or use an existing hardware component’s timing and use the timing offset for all 
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other components.  The IMU contains internal timing functionality, so the decision was 

made to use existing hardware for timing. 

To synchronize the cameras, a single camera was designated as the master 

camera, which was triggered internally by the software.  This allowed the control agents 

to signal image capture, which was very important for deadline timing.  Additional, 

“slave” cameras blocked on the hardware trigger signal, sent from the general-purpose 

output strobe of the master camera.  Once the hardware trigger signal was received, the 

slave cameras would un-block and capture an image.  Timing tests were performed by 

outputting the system time immediately after the capture trigger signal for both cameras.  

The tests showed that the slave cameras captured images at the same system time as the 

master camera.  However, the system time had millisecond precision, so the slave camera 

cannot be assumed to capture an image at exactly the same time, only within a 

millisecond of the master camera, which still results in very closely-matched images. 

The IMU also had to synchronize timing with the cameras when an image was 

taken.  This timing synchronization was used to provide an indicator to the control 

mechanism to stop propagating IMU data.  The Crista IMU has an additional timing 

input, the pulse-per-second (PPS) counter that is normally connected to a GPS receiver.  

The strobed signal was connected to the PPS input, which served as a signal to reset the 

internal PPS timer on the Crista IMU.  The control agents could then stop IMU 

propagation when a PPS reset event was observed.  The IMU also had another internal 

timer which was used to provide master clock timing.  By using the internal timer for the 

master clock, the images could be accurately timed as an offset to the master IMU time, 

59 



 

denoted by a reset of the IMU’s PPS time.  The hardware connectivity is shown in the 

diagram in Figure 3.1. 

Master Camera

Crista IMU
PPS Input

Control Strobe Out

Slave Camera

Control Strobe In

Computing Platform

IEEE 1394 Bus

RS-232 (serial)

interface

Sensor
External Timing

Slave Camera

Control Strobe In

 

Figure 3.1: Hardware Connectivity Diagram.  Control signals (bold red lines) are sent via 

the master camera to the slave camera(s) and the IMU, providing camera synchronization 

and image timing for the rest of the system.  Connectivity to the computing platform 

(dotted blue lines) is achieved by IEEE 1394, USB and RS-232 interfaces.  Additional 

sensors can be attached to the system as shown by the dashed line components. 

 

The last step for hardware design was coming up with a portable power solution.  

The default way to power the sensors was to use a separate AC adapter for each attached 

sensor, as well as one for the computing platform.  Simply using vision sensors and an 

IMU, the system had three bulky AC adapters that had to be attached to an external 
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power supply during mobile operations.  The decision was made to come up with a more 

practical solution that utilized a single power source.  The power to IEEE 1394 devices 

can come from an external power source or from a powered bus.  This was sufficient for 

the image sensors, but the IMU also required power.  This was accomplished in the final 

system design by tapping in to a power source that came out of the general-purpose 

output line from the image sensors.  The power for the cameras (and the general purpose 

output) comes from the IEEE 1394 firewire bus.  This power source was sufficient to 

power two image sensors and the IMU.  It is likely that many more devices could also be 

powered by tapping in to this bus for future sensor platform designs.  The final sensor 

platform configuration is shown in Figure 3.2. 

 

Figure 3.2: Sensor platform for the basic navigation system.  The final sensor platform 

uses binocular vision and a choice of two connected IMUs; the Crista IMU and the 

MIDG-II.  Connectivity to the cameras is provided by a daisy-chained Firewire bus.   
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3.3 Software Design 

The software design for the navigation system was the most complex, risky, 

involved, and rewarding part of the entire thesis.  As mentioned previously, the system 

was built as an improvement to the existing work by Major Veth.  The major area that 

needed improvement was the image processing algorithm, since that was the biggest 

barrier for real-time operation.  The GPGPU concept was studied, and several designs 

were considered.  The initial design was developed using C# (pronounced C-sharp), 

Microsoft’s OO language, and Accelerator, Microsoft Research’s hardware-abstract 

GPGPU API, to perform GPU-accelerated image processing.  During the development of 

this initial system, the open-source OpenVIDIA project (Fung 2005) was released.  At 

that time, focus shifted from the C#/Accelerator project to the current solution, utilizing 

C++ and OpenVIDIA as the foundation for GPU-accelerated image processing. 

The design of the current system was approached in the RUP manner, with 

weekly requirements meetings, risk mitigation, use cases, weekly releases, and UML 

documentation.  In addition, the architecture was carefully planned and implemented to 

provide maximum extensibility for additional sensors and functionality without 

disturbing the core GPU-accelerated feature extraction system.  As sensors were 

integrated into the solution, the need for concurrency arose, along with mutually-

exclusive locks and condition objects for thread-safe access to data.  The concurrency 

restrictions drove the need for the blackboard multi-sensor fusion architecture to help 

minimize the complexity and eliminate concurrency issues such as deadlock.  
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The current software system is comprised of four main components; the sensor 

agents and controllers, the feature extraction and image loading component, the 

navigation state and prediction component and the view and user interface component.  It 

differs from the traditional MVC architecture because the use of GPGPU image 

processing led to a situation where the view component contained functionality that 

encompassed both the user interface (UI) and a portion of the model and controller.  The 

model and controller roles were removed from the UI by the creation of an abstract object 

to help encapsulate the GPGPU functionality and decouple it from the UI.  However, 

some controller objects still retained view component functionality due to performance 

constraints.  All four components are joined together by a high-level composition object, 

the main controller.  The composition pattern (Gamma 1995) is a well-known software 

design pattern that integrates well into component-based software architecture.  Each 

component’s design is described in a separate sub-section. 

3.3.1 Use of the Rational Unified Process 

A typical RUP iteration for this thesis began with the typical inception phase 

requirements meeting.  A requirements meeting with the “user”, Maj. Veth, evaluated and 

discussed new requirements for their benefit, applicability and feasibility, given time and 

hardware constraints.  Examples of requirements were DCAM camera interoperability, 

multiple processing modes, network capability, and the ability to load navigation states 

from a configurable plain-text file.  Requirements meetings typically resulted in a new 

additional set of use cases, or modification to existing ones.  Risk mitigation was 

performed next, during the elaboration phase.  If an addition or change required an 
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architectural change, it was identified as high risk and performed first.  If the change 

added functionality without any substantial change to the system, then that change was 

performed next.  Lastly, any changes or additions that resulted in improved system 

stability, compatibility, or future extensibility was performed.  These changes were also 

often performed after a release, but before a new iteration began, since the changes 

usually required in-depth research into the external libraries and packages, such as STL 

and GLUT.  The actual programming during the construction phase was followed by a 

release. 

During the release phase, the code was reviewed and edited to improve readability 

and understanding, comments were added, and the API was modified for better 

information hiding and protection.  Lastly, the release was usually put on the AFIT 

network for access by the users.  The AFIT network was initially used rather than a 

Concurrent Versions Systems (CVS) repository because of the limited number of users 

and their familiarity with the sharing medium.  The system was later transitioned to a 

CVS repository on the AFIT network after the project took on more developers. 

3.3.2 Hardware-abstract approach 

The initial navigation system design used a hardware-abstracted language, 

Accelerator, along with an implementation of SIFT written in C#.  C# was chosen 

because unlike other common object-oriented languages like Java, performance-

restricting overhead could be easily removed.  For instance, garbage collection and array 

bounds-checking in Java can be computationally burdensome.  However, the standard 

Java specification has no way to turn it off.  C# provides a simple way to turn off features 
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like garbage collection using simple compiler directives.  In addition, there was existing 

GPGPU API support for C# in the form of Accelerator. 

The C# implementation began with a CPU-based version of SIFT obtained from 

(Nowozin 2004).  This implementation was originally used for panorama building, using 

SIFT features for image correlation.  However, the implementation was slow and 

unrefined.  The API and process were cleaned up and a custom graphical user interface 

(GUI) was created for visualization of the SIFT features.  After the SIFT implementation 

was modified to compile and run on both Windows and Linux operating systems, 

Accelerator was integrated into the implementation. 

Accelerator is a GPGPU API that abstracts the details of GPU hardware out of the 

language.  Rather than programming using textures and vertices, the Accelerator 

programmer works with arrays and kernels (Tarditi 2005).  However, the downside to 

Accelerator was that the language compiles to DirectX API calls, which are transformed 

into GPU hardware assembly language.  The extra layer of abstraction makes Accelerator 

a slower language by default than applications written in DirectX shading languages or 

GPU assembly.  In addition, although Accelerator was advertised as being as efficient as 

hand-written GPU shaders, the application had to be written entirely for the GPU to get 

that benefit.  Otherwise, the image data for GPU rendering had to constantly be written to 

and from system and video memory, which is a time-consuming process.  The initial 

integration of Accelerator into the C#-based SIFT application resulted in a very slight 

increase in performance.  The speedup achieved was negligible in most cases, cancelled 

out by the time needed for Accelerator to initialize the GPU and the time needed to 
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transfer data back and forth between the CPU and GPU.  The biggest gains were found 

when processing large images in rapid succession, but these gains resulted in a system 

that performed feature extraction at less than 1 Hz, which was slower than desired for 

real-time computing. 

3.3.3 OpenGL approach 

The decision to move from the C#/Accelerator-based platform to C++ was 

motivated by two factors; performance and OpenVIDIA.  OpenVIDIA was released as 

open-source software at approximately the same time the C# system’s initial performance 

data was being analyzed.  It is advertised to do exactly what the navigation system 

needed; SIFT using the GPU.  In addition, OpenVIDIA is written in C++, which has 

better math performance characteristics than C# or Java (Cowell-Shah 2004) and Cg, 

which is cross-platform capable, unlike Accelerator.   Therefore, the decision was made 

to move the software platform to a full C++ implementation. 

OpenVIDIA uses a mix of C++, OpenGL API calls, and Cg to perform SIFT-like 

feature extraction using the GPU.  OpenVIDIA was written on an Ubuntu Linux 

platform.  It uses Mark Kilgaard’s GL Utility Toolkit (GLUT) (Kilgaard 1996) for the 

windowing system and the GL Extension Wrangler (GLEW) for its OpenGL API calls.  

Feature extraction consists of first using a Harris corner detector to find points of interest 

in an image that has been applied to a texture.  These points of interest are placed in 

another texture and used as a lookup table for SIFT feature vector calculation.  A 128-

element SIFT feature vector is then computed and written to each row of the lookup table 

texture.  Histogramming, necessary for orientation calculations in SIFT, is also performed 
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on the GPU in OpenVIDIA using the cosine function from the Cg fragment shader API.  

This is especially impressive because histogramming normally requires a decision tree 

(nested if-else statements), which GPU hardware does not natively support.  In addition 

to feature tracking, OpenVIDIA can also be used to perform a Hough transform or many 

other types of image filtering using the GPU.   

The software platform for this thesis was built on OpenVIDIA as the foundation 

for the feature extraction component.  To ensure compatibility with this foundation, the 

same GLUT, GLEW, and Cg libraries had to be included.  Since cross-platform 

compatibility was desired, the standard template library (STL) was used for almost all 

C++ data structures and I/O that was not written by the author.  The STL is a collection 

of template-based data structures and algorithms with common implementations in Unix 

and Windows.  External libraries were only used if there was no existing solution in the 

STL and the external library was cross-platform capable.  The basic program flow was to 

load an image from either an image sensor or from file, extract features for this image, 

then redisplay the extracted features to the user.  For navigation, the program would have 

to run the navigation component either serially or concurrently with feature extraction, 

and use the extracted features for feature correspondence.  Requirements meetings during 

the RUP process led to more use cases and a much more full-featured program, as 

described in the following sub-sections. 

3.3.4 Feature Extraction Component 

The feature extraction component of the system software was heavily coupled to 

Fung’s OpenVIDIA implementation.  To minimize coupling of OpenVIDIA with the rest 
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of the system, and allow for future implementations to use a different feature extraction 

library, the software used interface objects to encapsulate the feature extraction routines.  

The Texture Manager class was created to be this interface to the OpenVIDIA library.  

The Texture Manager class also encapsulates the render-to-texture functionality needed 

for feature computation.  OpenVIDIA provides the API to compute features, but does not 

perform feature extraction from an input texture until the render-to-texture step has been 

completed.  Additionally, to streamline performance, the Texture Manager class was 

given the ability to draw features and feature-related display objects using OpenGL 

commands.  This was a departure from the MVC design, because the feature extraction 

step is a function of the model or controller component, while drawing data to the screen 

is typically a function of the view component.  This was a necessary departure because 

both feature extraction and drawing are GLUT window-based, and the Texture Manager 

class serves as a GLUT window manager. 

However, the task of coordinating and loading images to the multiple Texture 

Manager objects was assigned to a higher-level class; the Image Loader.  The Image 

Loader class was first designed to load static images from a file.  The idea was to get the 

system to reliably extract features from static images, then move on to dynamic camera 

images.  There was no file-loading capability built in to OpenVIDIA, so that capability 

had to be added. 

Once SIFT feature extraction was working on image files, the next step was to get 

the software to perform SIFT feature extraction on images from attached image sensors.  

OpenVIDIA had a pre-existing camera control API that used a Linux DCAM library 
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package.  However, there was no existing DCAM library in Windows.  In fact, most 

IEEE 1394 camera manufacturers create their own software development kit (SDK) for 

control and configuration of their cameras.  These SDKs usually only work with one 

driver and one camera, which poses a compatibility issue if the image sensor is ever 

changed to a different type, or if the sensor platform contained image sensors from 

multiple manufacturers.  To eliminate this problem, the software system was built to 

utilize the Carnegie-Mellon University (CMU) DCAM drivers.  The CMU DCAM SDK 

provided an API that was common to all DCAM-compliant cameras and drivers that 

provided most of the DCAM-specified functionality for any attached DCAM-compliant 

camera.  This made it equivalent to the Linux DCAM package found in OpenVIDIA.  

Much like how the Texture Manager class encapsulated much of the OpenVIDIA and 

OpenGL functionality, the DCAM functionality was encapsulated in a Camera Controller 

class that served as the interface to the camera API.   

The next step after getting image sensor feature extraction working was to get it 

working on a binocular image sensor setup.  As mentioned in the hardware section, the 

image sensors were set up so that the master camera would be triggered in software and 

send a hardware trigger signal to the slave camera.  The hardware triggering functionality 

of the CMU DCAM API works by forcing the slave camera to block the calling thread 

and waiting for another signal to unblock it.  Unfortunately, at this point the software was 

single-threaded, so processing could not be performed while blocking on camera input.   

The problem was solved by associating each Texture Manager with a different 

Camera Controller object and GLUT window.  Each Camera Controller was then able to 
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run in a separate thread, and the Texture Manager objects associated with that window 

could then block, if needed, waiting for an external trigger signal.  The other threads 

could continue processing as normal.  This change required the ability to render to 

multiple windows, which GLUT did not support.  The GLUT library was switched out at 

this point to the FreeGLUT library, which fully supported rendering to multiple targets.  

Multi-threading is described in more detail in the sensor control component sub-section. 

3.3.5 Sensor Control Component 

Once feature extraction was working in real-time, the next step was to integrate 

additional sensors, such as the IMU.  As mentioned previously, additional Camera 

Controller objects had to be run in separate threads because of the blocking nature of 

external triggering.  Since other attached sensors had the potential to block while waiting 

for input, the sensor controllers were built so that they also ran separate from the main 

thread of execution.  Half of the sensor controller design was interfacing with the 

hardware API.  The sensor controller had to have an efficient routine to interpret the 

signals coming from the hardware and process it into usable data.  The other half of the 

sensor design was data access.  Once a sensor controller acquired data, it had to find 

some way to either send the data somewhere for immediate processing, or to write the 

data somewhere to be accessed at a later time.   

The concept of multi-sensor fusion played a large role in the design decisions 

made for concurrent sensor access.  The system was designed to maximize hardware 

access and minimize sensor data writing time, which could only be done by writing 

sensor data immediately after it was acquired.  For example, if a sensor performed 
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immediate data processing, then it could possibly have to wait on a locked or shared 

resource.  It also might execute a task that takes a long time to complete, such as IMU 

propagation.  The longer the wait or task, the more chance there was that the sensor 

controller would miss incoming data from the hardware.  In dead-reckoning navigation 

systems, missed data results in inaccurate navigation predictions.  Therefore, the decision 

was made to immediately write the data somewhere that could be accessed at a later time.   

However, this brought about the classical problems of concurrent access to data 

shared among multiple threads of execution.  The problem that could occur is that a 

thread might try to access a memory location as another thread is writing to the same 

location.  Mutually-exclusive locks and condition objects were used to regulate access to 

shared data.  The threading system, locks, and condition objects came from OpenThreads 

(OpenThreads 2007), which is a cross-platform concurrency library extension for C and 

C++.  OpenThreads is modeled after the java concurrency package and uses a Posix-like 

API. 

The blackboard architecture was used to manage the synchronization data 

structures and provide a common repository for sensor data, despite what sensors were 

actually present.  This way any attached sensor could write to one common area, and all 

the sensor data could be retrieved from the same common area.  Two time-ordered 

queues were used in the blackboard, one that contained IMU data and another that 

contained Event objects, which are simply sensor data wrapped by the time that the 

sensor acquired the data and the type and ID of the sensor controller.  Event objects are 

an example of the decorator pattern (Gamma 1995).  The two were kept separate because 
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the IMU data drove event access, and events were often written to the event queue long 

after the corresponding IMU packet had been written to the IMU queue, as illustrated in 

Figure 3.3.   
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Figure 3.3: Event queuing and scheduling.  The boxes represent tasks being performed by 

the threads of execution.  The left edge represents the time when the task was started, the 

right edge represents the time when the task was queued to the blackboard. 

 

Because of this relationship, timing synchronization between sensors was crucial.  

If timing was not synchronized, then sensor data would be integrated into the IMU 

trajectory at the incorrect time.  As IMU data was acquired, it was written to the IMU 

queue and the master clock time was updated in the model.  As other sensors acquired 

data, they retrieved the current master clock time, so that time could be used as the Event 

time when data was ready to be written to the Event queue.  As Figure 3.3 shows, if 
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timing was not taken into account for order of execution, the task order would be in the 

order indicated in the left column.  However, the correct order of execution, based on 

when the event actually occurred is very different, indicated by the order of events in the 

right column.  Examples of Events that were put on the Event queue are Scene data 

(Features extracted from images using OpenVIDIA), GPS position data from a GPS 

receiver, and LIDAR data. 

The sensor controller interface was developed to be implemented by all sensor 

types attached to the system.  The sensor controller interface for non-image sensors in the 

system simply collected and enqueued data for use by control agents.  Such 

implementations were simply controller objects that changed the model.  However, each 

image sensor was matched to a GLUT window, which performed both feature extraction 

and display functions.  Therefore, the image-based sensor controllers were controller 

objects that affected changes to the model and the view components of the MVC 

paradigm.  Despite these differences, there was enough similarity between the imaging 

and non-image sensors to make them derive from the same base class.   

The sensor controller interface worked in a simple threaded loop.  It initialized, 

checked the hardware to determine if data is available, and interpreted that data as 

necessary until it had a data packet that can be processed.  In most implementations of the 

sensor controller, data packet building was performed in a state machine.  The data 

packet was then sent to the blackboard and written to the appropriate queue.  Once the 

data was written, the thread returned to the hardware checking loop.  The sensor 

controller interface was implemented for a Crista IMU and DCAM camera sensors, as 
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well as a SICK scanning LIDAR and a Novatel OEM-4 GPS receiver.  The sensor 

controller interface conceptual diagram is shown in Figure 3.4. 
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Figure 3.4: Sensor controller interface.  The sensor controller interface is and abstract 

class derived from the OpenThreads::Thread class, and is implemented by the camera 

controller, IMU controller, GPS controller, and LIDAR controller classes.  These 

concrete controller classes inherit properties from the Thread class and implement the 

methods in the SensorController class. 

 

3.3.6 Navigation Component 

Once sensors had been integrated and working concurrently with feature 

extraction, the data was used for navigation by creating the navigation component.  The 

navigation component was mostly designed after the previous work by Maj. Veth.  The 

existing system had been written in MATLAB, which is an interpreted language built on 

C, and does not have the power, flexibility, extensibility and compatibility of C++.  The 

major problem with converting a program from MATLAB to C++ was the lack of built-
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in linear algebra functions and data structures.  Matrices, vectors, eigenvalue computation 

and Cholesky decomposition were just a few of the functions that were native to 

MATLAB, but had to be duplicated in the C++ application.  Much of the functionality 

was obtained by using, modifying, and improving the Template Numerical Toolkit 

(TNT), a C++-based linear algebra library from the National Institute of Science and 

Technology (NIST).  However, there was so much functionality lacking from the TNT 

package that a large portion of time was spent creating, testing and debugging linear 

algebra functions written to emulate MATLAB functionality.  In the end, the navigation 

component was designed as a composition of four major subcomponents; the navigation 

state, the navigation state machine, the Kalman filter, and the landmark tracking 

component.  

The first subcomponent designed was the navigation state.  This was a necessary 

foundation because every other subcomponent changed or used the navigation state.  The 

navigation state included location information for both the navigating body and the 

landmarks identified in the system as well as direction cosine matrices (DCM) for sensor 

and platform pose information.  The location information includes both an initial 

position, in WGS-84 coordinates, as well as a current position relative to the local 

navigation frame, that could be combined with the navigation state to compute the current 

position relative to the WGS-84 ellipsoid.  The state also includes a set of the currently 

tracked landmarks, their location, how long they had been tracked, and the error 

associated with each tracked landmark.  The navigation state also contains hardware 

parameters, such as the camera and lens focal length parameters, IMU biases, and other 
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hardware information that was used by the navigation component.  These hardware 

parameters make up the navigation state’s hardware model. 

The hardware model connects the navigation component to the corresponding 

hardware physically connected to the system.  The camera model consists of the camera 

pose relative to the sensor platform, the image width and height for capture, the principal 

point, camera pose information and lens parameters needed to correct image distortion.  

The IMU model consisted of the pose of the IMU in relation to the navigating body as 

well as biases for the gyros and accelerometers in the IMU.  

Once the navigation state and hardware model were defined, a landmark tracking 

sub-component was designed to detect and predict landmarks from the features extracted 

in images.  Landmark tracking is based off of the image correspondence theory presented 

in Chapter 2.  The landmark tracking function initially takes an image, extracts features, 

and chooses landmark candidates from those features.  Landmarks are chosen based on 

the number of cameras available and the distance between features.  If there is more than 

one camera available, the landmark detection algorithm tries to match features between 

both images, predicting the location in one camera’s image to a corresponding location in 

the other camera’s image, based off the camera model information.  The landmark 

detection sub-component also gives preference to features that are more distinct and 

further apart from each other, which minimizes false positive identification during feature 

correspondence searches.  These features are chosen via a weighting function applied 

each time a new landmark candidate was evaluated.  The function gave more weight to 

those candidates that had a sufficiently large SIFT scale factor and a minimum 
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Mahalanobis distance from currently-tracked targets.  The highest-weighted features are 

assigned as new landmarks and given a 3D coordinate and uncertainty information in 

addition to their basic SIFT feature information of scale, orientation and descriptor.  This 

gives the navigation system a representation of where the landmark was in the real world, 

versus the feature location on a 2D image plane.  The landmarks are stored in the 

navigation state, in a STL vector object for fast searching, sorting and efficient memory 

management. 

The landmark detection sub-component then performs a search for tracked 

landmarks in the next image when it became available.  The search is a constrained 

predictive feature search, where full feature extraction is performed on the next image, 

but only a subset of these features are actually matched against the previous image’s 

tracked landmarks.  The subset of features is chosen by predicting the tracked landmarks 

from the previous image into corresponding locations in the current image, using the 

IMU trajectory and the pose information from the navigating body, cameras, and IMU.   

The last subcomponent designed was the Kalman filter, which provided a 

feedback and fusion mechanism for the system.  The Kalman filter, as mentioned in 

Chapter 2, is a recursive estimator.  It can take the previous state and use it to predict the 

current state.  The navigation state for the navigation system presented in this thesis 

consisted primarily of position and pose information output by the Kalman filter.  The 

Kalman filter is capable of true dead reckoning, where the state input and output could be 

solely based off of the IMU sensor data.  The Kalman filter is also capable of image-

aided inertial navigation predictions, where the results of feature correspondence are 
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integrated into the dead-reckoning solution.  These results are used to correct the current 

solution, and fed back into the Kalman filter to refine future solutions by adjusting the 

IMU readings.  The feedback-enabled Kalman filter is illustrated in Figure 3.5. 
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Figure 3.5: Kalman filter for image-aided inertial fusion.  The Kalman filter in this 

diagram fuses image and inertial sensors by using the results from feature correspondence 

to correct the IMU trajectory.  The trajectory corrections are then fed back to improve 

future predictions. 

 

The last navigation subcomponent, the navigation state machine, was created as 

an event-driven navigation processing thread.  As mentioned in Chapter 2, the concept of 

an image-aided inertial navigation system is to process inertial data until the time when 

an image was taken, use the image to correct the IMU trajectory, then repeat.  However, 

to incorporate additional sensors that may have readings at other times, an event-based 

processing system was needed.  At the heart of event-based processing is the Event data 

structure and the Event queue, described previously in the sensor control / blackboard 

description.  The navigation system uses the time of the next Event on the Event queue to 
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decide the next action to take.  For instance, if the IMU packets on the IMU queue are all 

tagged with a time that is less than the next Event on the Event queue, then IMU 

propagation needs to occur.  If the next Event is an image, then feature correspondence 

needs to take place.  If the next Event is a GPS packet, then the GPS update routine for 

the Kalman filter needs to be invoked.  The Event processing loop is switch-based, 

making it flexible and extensible for a number of different sensors and sensor types.  

The navigation state machine processing takes place in a separate thread from the 

sensor control and feature extraction components.  This is beneficial because the 

concurrency allows navigation predictions to take place independent of sensor controls.  

This way the sensor controllers were decoupled from the navigation system, and were not 

limited by the speed of the navigation prediction.  In addition, this allowed the sensors to 

run in a non-navigation mode, useful for data-collection experiments.  The sensor 

controllers merely queued Events to the blackboard, and the navigation system used these 

Events as they become available.  However, this can also be dangerous, because the 

decoupled sensors could possibly acquire data faster than the navigation system could 

process it.  In this situation, the Event queue would eventually be overrun by the sensor 

data.  This situation can be accounted for by increasing the speed of the navigation 

algorithm, decreasing the sensor capture rate, or improving the speed of the computing 

platform via hardware upgrades.   

For this navigation system, navigation state prediction is kept relatively simple to 

ensure that it runs at a much faster rate than sensor acquisition.  In addition, the 

computation-intensive image processing step is coupled to the image sensor data 
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acquisition, which limits the sensor rate so that it is much slower than the navigation 

prediction rate.  The only problem with coupling image processing to the data acquisition 

step is that the image capture rate is limited by the speed of feature extraction. 

3.3.7 View Component 

The final system component integrated was the view component.  This component 

was developed last because it was the last layer of abstraction from the model to the user.  

Early iterations used a simple command-line driven interface, where the user declared 

runtime options as command-line parameters, which were then interpreted before the 

program started computation.  This approach was problematic because mistyped options 

would result in incorrect application behavior or failure.  The user had to know a set of 

switches and commands that corresponded to various application options.  In addition, 

the user could not switch these options while the application was operating. 

The weaknesses of the command-line approach led to a more interactive UI, 

where the user could dynamically alter parameters as the program was running by 

overlaying a menu on the view screen and introducing a keystroke capture routine.  

However, this approach used valuable rendering resources and was still short of a 

professional user interface.  The final design used a menu-driven UI that was rendered in 

a separate window and a separate thread.  While this used slightly more computer 

resources, it removed the UI component from the feature extraction component by 

separating the menu windows from the image processing windows. 
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3.4 Real-time Constraints 

The software system was designed with real-time constraints in mind.  Real-time 

constraints, as mentioned in Chapter 2, consist of a deadline from event to system 

response.  The event associated with this system was the acquisition of sensor data by the 

sensor controller.  The system response was the navigation prediction output by the 

navigation component.  The deadline time was affected by the capture rate of the sensor, 

the speed of the sensor processing routine, and the time to compute a navigation 

prediction from the sensor data.  These variables meant the deadline would vary based on 

the sensor type, settings, and computing platform.  In addition, a missed deadline would 

not result in system failure, so it could be tolerated and the previous navigation prediction 

could be used for an approximate location.  Therefore, the system was best suited to a 

soft real-time system. 

The blackboard architecture and concurrent sensor model offered a very flexible 

platform for real-time system design.  Since the sensors were decoupled from the 

navigation computation and from each other, they could complete their task without 

interruption.  This meant the system was non pre-emptive, and scheduling could be 

performed by the operating system (OS) rather than a real-time scheduler.  In addition, 

since the OS performed scheduling, all threads had equal priority, eliminating problems 

of priority inversion.  This design worked well with the existing computing platform, 

which utilized multi-processor computing architecture, since the typical real-time 

scheduling algorithms (LL and EDF) are sub-optimal for multi-processor computers.   
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The navigation system was designed as a soft real-time system with a non pre-

emptive, single-priority scheduler.  One goal of this system, like all other real-time 

systems, was to minimize the deadline.  The deadline for a non pre-emptive scheduled 

system is the time required for the shortest task plus the time required for the longest 

task.  The tasks for this system are divided among the system components.  In terms of 

complexity and required computation, the shortest task in the system is sensor 

acquisition, while the longest task is processing a Scene Event for navigation.  Therefore, 

minimizing the time for the sensor acquisition as well as the time for Scene Event 

processing will result in the lowest deadline time for this system.  Since the deadline is 

the time between the sensor acquisition and navigation prediction, the latency of the 

system is equal to the deadline.  The system was therefore designed to minimize the task 

times for sensor acquisition and feature extraction in order to minimize the real-time 

deadline and latency. 

3.5 Summary 

This section provided an overview of the methodology used to design and 

implement the software and hardware used for this navigation system.  The details of 

hardware design and integration were discussed, focusing specifically on compatibility 

and timing.  Software design was approached in a RUP manner, with the riskiest 

components being developed first.  In addition, weekly prototypes of the software were 

developed, and functionality was added to each prototype release.  This meant that 

architecture issues were handled early on in development and functionality was added so 
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that it would not disrupt the rest of the existing software.  Software design was broken up 

into four components, each representing a major part of the software. 
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IV.  Analysis and Results 

The first goal of the system was to improve upon the previous system by 

performing accurate, precise navigation in real-time, rather than post-processing 

navigation data.  To ensure accuracy, the system needed to capture and process image 

data at a rate that would correct errors in the inertial measurement data.  The previous 

work in this area found that post-processing images captured at 2.5 FPS would stabilize 

the feature correspondence search using consumer-grade inertial sensors.  Therefore, the 

new system had to capture and process navigation data at a rate that exceeded 2.5 Hz.  

The second goal was to minimize the latency, or the amount of time between when the 

sensor data was acquired and when the navigation prediction based on that sensor data 

was computed.  This required first knowing what the system latency was, then 

overcoming any bottlenecks in sensor acquisition and navigation prediction computation 

to minimize the latency. 

4.1 Test Plan and Setup 

In RUP development, projects must be tested according to a test plan, which 

outlines the tests to be performed their timeline.  The test plan for this system was driven 

by development needs, which is typical of a RUP-style project, where tests are tailored to 

fit the needs of the iteration in which they are developed.  These tests are also designed so 

that they are general and repeatable for future iterations.  The tests developed during 

early iterations were component tests and integration tests.  The development of a formal 

test model enabled automated testing using a test suite similar to Junit tests (Link 2003) 
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during later iterations.  Lastly, tests of the fully integrated system in the final iterations 

were performed via simulations and online tests. 

4.1.1 Component and Integration Testing 

Component and integration tests were performed when changing or adding to the 

system software or hardware architecture.  Each component was individually tested for 

functionality then integrated into the rest of the system.  The tests started from the user 

interface component and moved gradually to the more complex parts of the system that 

were dependent on previously tested components.  The first component tested was always 

the view and visualization component.  This meant that the windowing system, UI, and 

image display all had to work properly.  Secondly, feature extraction was tested to ensure 

that any changes did not negatively affect the OpenGL or GLEW subsystem, resulting in 

slower or degraded feature extraction capability.  The sensor controllers were tested next, 

since changes to the event-processing loop would oftentimes affect the rate at which 

sensor data was accessed from the data queues.  This would expose any concurrency or 

data structure problems previously masked by correct operation of the event processing 

loop.  Lastly, the navigation component would be integrated and tested, since it was 

dependent on the UI, feature extraction, and sensor controller components. 

Integration testing revealed system bottlenecks.  The first bottleneck found in the 

system was image access time, found when integrating the image sensor component.  The 

OpenVIDIA feature extraction component could perform feature extractions on a 

512x512 image loaded from a static file at over 20 Hz on the computation platform with 

the enhanced GPU.  It was found that when the image sensor component was added, 
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frame rates would drop below 20 Hz, on average.  The immediate reaction was that the 

problem was a result of poor component design.  In an effort to test the design, the static 

image file was reloaded every frame, mimicking the frame-by-frame image capture of the 

cameras.  This comparison test resulted in a significant reduction in the frame rate of the 

static image feature extraction.  Therefore the frame rate reduction was an image access 

time issue not necessarily a design issue.  The image access time was affected by a 

number of different factors.  File-based image loading time was a result of the speed of 

GPU video memory and main system memory, as well as the hard disk drive speed.  

Camera-based image loading time is limited by the GPU video memory, main system 

memory, the image sensor hardware, and the drivers used to access that hardware.  To 

maximize the image processing rate of this system, fast camera and computer hardware 

components are needed.  

4.1.2 Model-based Automated Testing 

A program is a combination of algorithms and data structures [Wirth 1976].  The 

previous MATLAB-based navigation system and the new C++/GPU-based navigation 

system used very similar navigation algorithms, but were not identical, due to the 

differences in feature extraction, programming language, data structures, and external 

libraries.  However, the navigation results from the old system should be used as a model 

for comparison of navigation predictions to the new system, given the same sensor data 

as input. 

The model was first tested by comparing results for the same system inputs at the 

function-level.  Given the same initial conditions, image data, IMU data and integration 
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time, the new navigation system should predict the same navigation position as the 

MATLAB system.  To go further in detail, the Kalman filter in the new system should 

output the same Xt and Pt as the MATLAB system.  This comparison can be traced back, 

step-by-step, to the output of each function call for the Kalman filter and navigation 

system.  By comparing the inputs and outputs for each function call, any discrepancies 

could be found and either accounted for, or fixed.   

Since the comparison was at such a fine level of granularity, the tests were able to 

be automated at the method-level.  Given a fixed input, a method was expected to output 

a certain value.  If the output deviated from the expectation, then the method did not 

execute correctly.  The entire Kalman filter functionality was given an automated suite of 

tests and the program was given a way to run in a “debug” mode to test the methods 

individually using a runtime option, without needing to recompile.  The automated suite 

functionality was based on prior experience with Junit tests.  An automated test first 

loaded the initial conditions consisting of the navigation state and any sensor inputs.  

Then the test input these conditions to the function, and compared the output to the 

MATLAB answer that was hard-coded into the test.  If the values were within a tolerable 

range of precision, then the test passed.  If the values are outside of this tolerable range, 

the error statistics were output to the user and the test failed.  These tests were built so 

that they could feed into each other to create more complex tests that were incrementally 

verified. 

The advantage of automated testing is twofold.  First, functions could be verified 

at any point, just by inputting a different initial condition.  This meant that if there was a 
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certain point in the program that needed to be tested, the program did not need to be run 

up until that point, saving the programmer valuable time.  Secondly, the test was 

repeatable, since the variables and output were all the same, the test could be run as many 

times as was necessary and the same output was expected.  If the output changed, then 

the controls were set up incorrectly for the function test. 

4.1.3 Simulations 

The navigation system presented in this paper was created to process sensor data 

and navigation predictions concurrently.  However, the availability of a model and 

automated tests provided an opportunity for the two systems to be compared by using 

data loaded from file.  By simulating the presence of sensors, using sensor proxies that 

load the data from file, the entire program could be run in a simulation mode, useful for 

future debugging and post-processing efforts. 

The proxy sensor controller design was aided by application of the proxy pattern 

(Gamma 1995; Freeman 2004).  Proxy objects emulate the behavior of other classes, to 

simulate the presence of objects of the other class in the system.  When running the 

navigation system in simulation mode, the system sensor data was loaded from files, 

eliminating the need for data coming from system sensors that were actually attached to 

the system.  Rather than eliminate the sensors altogether and read straight from file, the 

sensor behavior was emulated in the proxy sensor controllers.  Proxy sensors behaved in 

the same manner as the actual sensor controllers, except that the proxy sensor readings 

came from file-based sensor readings captured during data collection.  This way any 

issues with sensor concurrency, interaction, or latency would be duplicated in the 
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simulation mode, rather than eliminated.  This unified the program behavior across both 

simulation and active running mode, eliminating redundancy in testing and aiding system 

debugging.  The proxy-based system is illustrated in relation to the active “online” 

system in Figure 4.1. 

CristaIMUController : 
IMUController

Main Controller

DataStore
(blackboard)

CameraImageLoader
: ImageLoader

ProxyIMUController
: IMUController

Main Controller

DataStore
(blackboard)

SequenceImageLoader : 
ImageLoader

Online Simulation

Texture 
ManagerTexture 

Manager

Texture 
ManagerTexture 

Manager  

Figure 4.1: System setup for simulation and online processing.  The italicized (yellow) 

classes are common throughout every mode.  The bold (gold) classes are applications of 

the proxy pattern. 

 

Simulations began with data collection.  The navigation system was run in a data 

collection configuration where it saved sensor data to file.  The sensor data encompassed 

readings from everything attached to the system, such as image data in the form of 

portable grey-map files, IMU data in the form of accelerometer, gyro, and timing data, as 
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well as optional GPS data and LIDAR data.  This data was saved in a separate directory, 

and the proxy image loader class was configured with the correct parameters to read the 

sensor data from this data directory. 

Once the data collection was complete, the navigation system needed a correct 

initial state.  This was accomplished by initializing the Kalman filter and navigation state 

to default values, as well as determining the correct earth-centered, earth-fixed (ECEF) 

position for the sensor platform.  Once the inputs were correctly set up, the system could 

be run in script mode, which worked the same as online processing mode, but loaded all 

sensor data from file to the proxy sensor controllers.  The navigation predictions at any 

point in the simulation could be compared to the navigation predictions from the 

MATLAB model, running on the same file-loaded data.  In addition, either simulation 

could be paused to visually compare the landmarks chosen and progress on the map. 

The first simulation performed was on data obtained on a run through the 

hallways of AFIT in August 2006.  The simulation consisted of 700 seconds of real-time 

sensor data.  The image sensors captured images at 2.5 FPS, while the IMU sensor 

captured data at 100 Hz.  This meant that there were 40 IMU updates propagated and 

integrated into a navigation prediction between each update by the image sensors.  The 

MATLAB model completed processing the data in 2251 seconds, which was 3 times as 

long as the real-time operation.  The MATLAB final position prediction was within 2 

meters of the actual final position.  The new system’s performance was measured against 

the MATLAB model in two categories; overall speedup and prediction precision.  The 

new system performed admirably in speedup, completing the script at an average of 4 
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FPS, in 455 seconds.  This was a 4.94x speedup over the MATLAB solution and 1.54x 

speedup over real-time.  The new system also performed very well over the range of data, 

deviating less than 1 meter from the model predictions over 450 seconds of real-time 

operation, as shown in Figure 4.2.  However, the new solution did show a weakness when 

there were no selectable landmarks, resulting in poor navigation predictions after the 450 

second time mark, as shown in Figure 4.3. 

  

Figure 4.2: Navigation prediction comparisons during a simulation run (partial).  The 

MATLAB model is used as the truth model, or basis for comparison, for the new 

navigation system.  The new system deviates less than 1m from the truth model less for 

the time period shown. 
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Figure 4.3: Navigation prediction comparisons during a simulation run (full).  The 

MATLAB model is used as the truth model, or basis for comparison, for the new 

navigation system.  The new system deviates greatly from the truth model during the last 

250 seconds of operation. 

 

The simulation results were obtained when reading features from a pre-computed 

file.  However, the system is capable of computing features using OpenVIDIA as well.  

The performance data from using OpenVIDIA for feature extraction suggests that the 

algorithm does not compute SIFT descriptors properly.  After much analysis and 

investigation, it was determined that the OpenVIDIA algorithm does not perform scale 

decomposition of images, resulting in features descriptors that are invariant to rotation, 

but vary with changes in scale.  Although this isn’t a problem for a stationary platform, it 
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is very detrimental to a moving platform, where landmarks will vary in scale as they 

move toward or away from the image sensors.  

4.2 Speedup Due to GPU Acceleration 

The feature extraction component was tested by using the built-in timing 

functionality of the GLUT library that could determine elapsed time with millisecond 

precision.  The time just before feature extraction was subtracted from the time just after 

the operation completed to determine the feature extraction time.  The feature extraction 

component of the new navigation system was timed against the feature extraction times 

for the same images using an implementation of SIFT that solely used the CPU to 

perform feature extraction.  Although this implementation used optimized image 

processing routines found in the OpenCV library (Intel 2007), Figure 4.4 shows that even 

optimized CPU-based routines perform poorly in comparison to GPU-based feature 

extraction.  In fact, the speedup ranged anywhere from 13x to 103x speedup for a single 

computing platform, with the larger images resulting in a greater speedup.  

There are many possible explanations for these findings.  The most obvious one is 

that the hypothesis of this thesis is true, and GPU-based image processing is decidedly 

better than CPU-based image processing, even when applied in a non-conventional 

manner.  Another explanation is that the OpenVIDIA library isn’t performing a full SIFT 

feature extraction algorithm, and that the skipped steps are causing the difference in 

processing time.  This may account for some of the speedup, but other data from 

(Heymann 2007) supports the first conclusion. 
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Figure 4.4: GPU vs. CPU feature extraction times.  The GPU feature extraction times are 

between 13 and 103 times shorter than the equivalent CPU feature extraction times. 

 

In addition to the speedup from feature extraction, offloading image processing to 

the GPU freed up CPU resources that could then be dedicated to other processes.  To test 

this effect, the application was run using the gDebugger tool (Graphic Remedy 2007), 

which measures CPU and GPU performance for OpenGL applications.  The resulting 

statistics were 50% CPU utilization and 20% GPU utilization, shown in Figure 4.5.  

Several conclusions can be drawn from these statistics.  First, the GPU is underutilized in 

comparison to the CPU workload, so more computation should be offloaded to the GPU 

to better balance the workload of both computation units.  Secondly, the conclusion can 

be drawn that the CPU is not fully utilized, even though the navigation predictions are 
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being run at full speed.  Therefore, the system could run additional background tasks, 

such as creation and maintenance of a feature database, or network communications, 

during navigation processing.  Lastly, despite the complexity of image processing needed 

for SIFT feature extraction, the GPU is still not fully taxed.  This means that this system 

could probably be run on slower, less expensive hardware.  

 

Figure 4.5: GPU vs. CPU utilization.  Average 50% CPU utilization and 20% GPU 

utilization during normal navigation prediction operation. 

 

4.3 Effects of Concurrency and Sensor Decoupling 

Concurrency in this navigation system was developed out of necessity because the 

image sensors’ blocking behavior required multithreading.  The resulting blackboard 

system architecture not only worked well for the multi-sensor platform, it helped to 

minimize latency for the real-time aspect of the system.  A beneficial side effect of 

concurrency was that the system was sped up compared to the MATLAB implementation 

even without the use of the GPU. 

As mentioned in Chapter 3, the system was designed as a soft real-time non pre-

emptive real-time system.  This meant that the latency was equal to the deadline, which is 
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a function of both the sensor acquisition rate and feature extraction time.  The system was 

run in both simulation and online processing mode to determine what the actual latency 

was versus what was expected.  The expected latency for a system can be estimated by 

adding the expected sensor acquisition time based on camera frame rate to the expected 

feature extraction time.  For an 800 x 600 image running at 20 FPS, for example, one can 

estimate the latency to be 50 ms for sensor acquisition and 100 ms for feature extraction, 

for a total of 150 ms latency.  The actual latency was measured by outputting the time 

that a navigation prediction was computed and the time of the Event associated with that 

navigation prediction.  The latency varied between 80 and 300 ms based on the rate and 

size of image capture.  Based on the results of feature extraction speedup for the system, 

it is apparent that the latency will also vary based on the speed of the computing 

platform.  The latency does not vary based on the attached sensors, as one might expect.  

Since the sensors are decoupled from navigation predictions, sensor data acquisition 

times do not factor in to the deadline timing.  The only sensor acquisition times that 

matter are the image sensors, since the feature extraction task takes the longest to 

integrate into a navigation prediction. 

In addition to minimizing latency, the entire solution was sped up in comparison 

to the MATLAB solution.  The new navigation system exhibited a 4.94x speedup when 

performing navigation predictions in post-processing (simulation) mode, without GPU 

feature extraction.  This speedup was due to the change in programming platform, data 

structures, and software design of the new system. 
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4.4 Summary 

This section centered on system testing and results from those tests.  The test plan 

was developed for each iteration with a focus on testing what was needed, using tests that 

were repeatable at any iteration.  Component and integration tests were used for 

debugging during additions or changes to the system and also revealed bottlenecks in the 

navigation system.  The existing solution written in MATLAB was used as a truth model 

to perform function-based testing, which then led to automated testing and simulation 

testing.  The simulation tests revealed that the new system’s predictions were very close 

in precision to the model, and the simulation ran much faster than the MATLAB solution, 

faster even than the sensors could capture data for the simulation.  This speedup was due 

to sensor decoupling, concurrency, and good software design.  Lastly, the GPU 

acceleration for this system was tested and found to be faster than any current solution, 

and much faster than what was expected.   
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V.  Conclusions and Recommendations 

The following chapter provides a summary of the research presented in this thesis.  

The conclusions are first presented, including what was expected, what was achieved, as 

well as the reasons for the conclusions that were reached.  The research is put into 

perspective for its significance to the scientific, academic, and military communities.  

Several recommendations for action and future research are presented, based on the 

results achieved and the potential for future research.  The future research was chosen 

from areas that have the most potential positive impact on autonomous precision 

navigation and map-building using commodity hardware. 

5.1 Conclusions of Research 

In the Mythical Man Month (Brooks 1995), Frederick Brooks asserts that the 

schedule of a software engineering project is most often the single most overwhelming 

factor in a project gone awry.  He attributes this to the fact that humans are optimistic at 

estimating the scope of a project, often underestimating the amount of work that needs to 

be done and confusing the effort put forth with actual progress.  Much like his essay on 

“No silver bullet” (Brooks 1995:17), Brooks’ predictions hold correct.  The software 

system presented in this research has much outstanding potential, but it still needs more 

testing and debugging before use on a live system.  The system has already exceeded 

expected speedup results for feature extraction, based on the results from previous 

implementations of SIFT on the GPU (Sinha 2006; Heymann 2007).  In addition, the 

software architecture and framework for this navigation system have been built using 

software engineering best principles, focusing on concurrent, real-time sensor processing 
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and navigation predictions.  This has resulted in a speedup over the previous system 

developed at AFIT, due to software engineering improvements alone. 

The navigation algorithm was built upon a proven, working system that was only 

capable of post-processing navigation data.  The Air Force and various other industries 

require a navigation system that can operate in real-time during times of GPS 

unavailability.  The system also needs to be mobile, sustainable, and operate in a variety 

of unknown environments.  The navigation system presented in this thesis can do all of 

the required tasks, and perform navigation predictions that border on the accuracy of 

GPS.  In addition, since much of the computation is offloaded to a GPU, the CPU is freed 

up to run other tasks, like Artificial Intelligence control systems for autonomous 

platforms.   

5.2 Significance of Research 

The research presented in this thesis is significant for several reasons.  First, the 

image-aided inertial navigation algorithm is a state-of-the-art GPS-alternative navigation 

system.  The algorithm employed by the system has been proven to work in unknown 

environments, while most other vision-based navigation systems require a priori 

information about their environment (Panzieri 2003; Thrun 2000; Trawny 2007).  This 

makes the navigation system especially useful for military applications, since the military 

often operates in austere environments, over unknown terrain, without GPS capability.   

Second, this is one of the first navigation systems to use GPGPU concepts to 

perform image processing.  Computation can be offloaded from the CPU to the GPU, 

freeing CPU resources to be devoted to other tasks.  Unlike an integrated circuit or 
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FPGA, the GPU can be reprogrammed during operation via the programmable rendering 

pipeline.  Additionally, the GPU architecture is built for raw computation resulting in 

superior computation performance in comparison to the fastest commercial processors.  

The GPU is also commodity hardware, so it can be added to an existing system as a 

relatively inexpensive, disposable, GPS-alternative navigation aid.  This is significant to 

the military and civilian community since the system can be integrated into existing 

platforms such as vehicles, UAVs, and munitions at a low cost and lower risk than 

embedded systems. 

Third, the research presented in this thesis is significant because it is a compact, 

extensible multi-sensor fusion framework that can be used for a variety of applications.  

The framework has the ability to add additional sensors, such as image sensors, GPS, or 

LIDAR, without any major changes to the navigation algorithm.  In addition, this 

framework is not limited to real-time active navigation processing.  It can also be used for 

data collection and simulations that run at speeds much faster than traditional CPU-based 

simulation programs, due to multithreading and GPU speedup.  The framework is 

modular, component-based, and easily expandable.  It is based on the MVC architecture, 

so the UI components, control mechanisms, and model are mostly decoupled.  This 

allows for a simple plug-and-play functionality, where components of the software 

system can be replaced with a different implementation without an adverse effect on the 

rest of the system. 

Lastly, the navigation system was built with compatibility in mind.  The system 

can work with a wide variety of image sensors, IMUs, and computing platforms.  This 
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makes the system truly valuable from a research standpoint, because it is portable and 

robust to hardware changes.  Much research performed in the academic community is 

dependent upon a specific platform or proprietary hardware and software.  The 

navigation system presented in this thesis moves away from this idiom and into a cross-

platform, component-based hardware and software architecture, useful to individuals 

outside the academic community. 

5.3 Recommendations for Future Research 

The navigation system presented in this thesis has many areas of potential 

improvement and further exploration.  These areas present improvements in both 

performance and functionality. 

First, the navigation system presented in this thesis computes the navigating 

platform’s position, but does not keep a database of landmarks.  However, constructing a 

landmark database presents a potential use as a SLAM solution or for map-building.  

Landmarks in the navigation system consist of a unique SIFT identification key, an error 

covariance matrix, orientation and scale information, as well as a 3D coordinate in the 

WGS-84 standard.  The landmarks can be stored and plotted to create a rudimentary map 

of the environment.  If additional map data is needed, additional sensors such as a 

LIDAR can be used to augment the database. 

Second, many individuals in the navigation community (Vaughan 2002; Turker 

2003) have extolled the use of multiple cooperating agents for task parallelization.  This 

navigation system would be very useful for a cooperative, multi-agent system, since 

landmark observations by other agents could be treated as an additional sensor input.  
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The additional sensor input would provide a more robust and more accurate navigation 

prediction.  In addition, map-building or SLAM solutions could be performed even faster 

by dividing the task among several agents, as seen in (Roumeliotis 2000).   

An alternative to having multiple navigation systems on multiple agents is to use 

a central processing station and networked sensors.  By moving the computation 

component from the sensor platform to a central location, the sensors can be smaller, 

faster, and agents overall would be less expensive.  However, issues of network security 

and intrusion detection for compromised sensor platforms would need to be addressed.  

This design would then be very similar to the control component of GPS, which is 

addressing the same issues in current modernization efforts. 

The navigation system presented in this thesis greatly outperforms its predecessor 

and contemporaries in terms of computation time.  However, there is still room for 

improvement.  The GPU is still under-utilized in comparison to CPU usage, as shown in 

the Chapter 4.  The major source of CPU usage was the mathematical computations for 

the Kalman filter during IMU propagation.  There are several advantages in moving the 

Kalman filter calculations to the GPU.  First, the entire system could possibly be sped up 

because of the GPU-accelerated parallel-processing capability.  Second, the system 

would have more CPU resources to devote to other tasks, such as integration of more 

sensors, advanced control techniques, or even to run additional applications such as 

artificial intelligence.  Lastly, more landmarks could be tracked if the Kalman Filter data 

structure was moved to the GPU.  The Kalman filter data structure is a 2-D matrix that 

grows exponentially as additional landmark tracks and additional sensor states are added.  
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Therefore, a navigation platform that had more sensors or tracked more landmarks would 

typically take exponentially longer to compute navigation predictions.  However, since 

the GPU is a stream processor, the time to perform calculations would only increase 

linearly in proportion to the matrix size, as shown in (Thompson 2002). 

A final area of improvement would be to take advantage of the latest GPGPU 

technology by developing the navigation system using CUDA.  CUDA abstracts the GPU 

hardware from the language API, so the programmer can program with familiar data 

structures and general-computing concepts, rather than using textures, shader programs 

and other hardware-based rendering concepts.  In addition, the CUDA architecture and 

API supports multi-threaded environments, so the multi-sensor fusion concept used in the 

navigation system presented in this thesis could be maintained.  Since CUDA is so new, 

and is geared toward the GPGPU community, it would also be worthwhile to seek out 

corporate sponsorship for this project. 
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